Алгебраические группы матриц
3. Линейные отображения. Действия с матрицами
3.1 Матрицы и отображения
Пусть и --- арифметические линейные пространства столбцов высоты и соответственно. Пусть, далее, --- матрица размера . Определим отображение , полагая для любого
где --- столбцы матрицы . Так как они имеют высоту , то в правой части (1) стоит вектор-столбец . Более подробно (1) переписывается в виде
Если ,
то .
Аналогично .
Обратно, предположим, что --- отображение множеств, обладающее следующими двумя свойствами:
(i) для всех ;
(ii) для всех .
Тогда, обозначив стандартные базисные столбцы пространств и соответственно символами и , мы воспользуемся свойствами (i), (ii) в применении к произвольному вектору
:
Соотношение (2) показывает, что отображение полностью определяется своими значениями на базисных векторах-столбцах. Положив
мы обнаруживаем, что задание равносильно заданию прямоугольной матрицы размера со столбцами , а соотношения (1) и (2) фактически совпадают. Стало быть, можно положить .
3.1.1 . Определение. Отображение , обладающее свойствами (i), (ii), называется линейным отображением из в . Часто, в особенности при , говорят о линейном преобразовании. Матрица называется матрицей линейного отображения .
Пусть , --- два линейных отображения с матрицами и . Тогда равенство равносильно совпадению значений для всех . В частности, , откуда и .
Резюмируем наши результаты:
3.1.2 Теорема. Между линейными отображениями в и матрицами размера существует взаимно однозначное соответствие.
Следует подчеркнуть, что бессмысленно говорить о линейных отображениях произвольных множеств и . Условия (i), (ii) предполагают, что и --- подпространства арифметических линейных пространств , .
Обратим внимание на специальный случай , когда линейное отображение , обычно называемое линейной функцией от переменных, задается скалярами :
Линейные функции (4), равно как и произвольные линейные отображения при фиксированных и можно складывать и умножать на скаляры. В самом деле, пусть --- два линейных отображения. Отображение
определяется своими значениями:
В правой части стоит обычная линейная комбинация векторов-столбцов.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах