Основная теорема алгебры

СОДЕРЖАНИЕ

1. Введение

2. Основные определения, используемые в курсовой работе

3. Элементы теории пределов для комплексных чисел

4. Доказательство основной теоремы

5. Список используемой литературы

1. ВВЕДЕНИЕ

Данная работа посвящена Основной теореме Алгебры, изучению существования корней в поле . Как

предположение эта теорема впервые встречается у немецкого математика Питера Роуте(1617г.). Д’Аламбер первым в 1746г. опубликовал доказательство этой теоремы. Его доказательство основывалось на лемме. Доказательство это было бы совершенно строгим, если бы Д’Аламбер мог доказать, что-то на комплексной плоскости значение модуля многочлена достигает наименьшего значения. Во второй половине 18 века появляются доказательства Эйлера, Лапласа, Лагранжа и других. Во всех этих доказательствах предполагается заранее, что какие-то "идеальные" корни многочлена существуют, а затем доказывается, что, по крайней мере, один из них является комплексным числом. Со времен доказательства теоремы в алгебре было открыто очень много нового, поэтому сегодня "основной" эту теорему назвать уже нельзя: это название теперь является историческим.

Целью моей работы является выявления, что поле комплексных чисел алгебраически замкнуто. Для доказательства Основной теоремы Алгебры я использовала ряд лемм: лемма Даламбера и лемма о достижении точной нижней грани значений.

При написании работы мною была использована следующая литература: Д.К.Фадеев "Лекции по алгебре", Л.Д.Кудрявцев "Курс математического анализа". А.Г.Курош "Курс высшей алгебры".

2. Основные определения, используемые в курсовой работе

Множества, удовлетворяющие требованиям:1-операция сложения,2-операция умножения,3-связь операций сложения и умножения, и содержащие хотя бы один элемент, отличный от нуля, называется полями.

Множество комплексных чисел можно определить как множество упорядоченных пар действительных чисел, , , в котором введены операции сложения и умножения согласно следующему определению:

В результате этого определения множество указанных пар превращается в поле, т.е. удовлетворяет условиям 1,2,3. Полученное таким образом поле, называется полем комплексных чисел.

Последовательность комплексных чисел - это функция, определенная на множестве натуральных чисел и имеющая своими значениями комплексные числа.

Последовательность называется подпоследовательностью , если для любого k существует такое натуральное , что =, причем Бтогда и только тогда, когда .

Комплексное число – расширение множества вещественных чисел, обычно обозначается. Любое комплексное число может быть представлено как формальная сумма , где x и y— вещественные числа, i— мнимая единица, то есть число, удовлетворяющее уравнению .

Вещественное число (действительное число) – любое положительное число, отрицательное число или нуль.

Функция – 1) Зависимая переменная величина; 2) Соответствие между переменными величинами, в силу которого каждому рассматриваемому значению некоторой величины x (аргумента или независимой переменной) соответствует определенное значение величины y (зависимой переменной или функции в значении 1).

Теорема Больцано-Вейерштрасса: из любой ограниченной последовательности можно извлечь сходящуюся подпоследовательность.

Последовательность называется ограниченной на множестве Е, если существует такая постоянная М>0, что для всех и всех выполняется неравенства

Последовательность сходится к функции f равномерно на множестве Е, если для любого существует такой номер , что если , то для всех выполняется неравенство. Последовательность называется равномерно сходящейся на множестве Е, если существует функция f, к которой она равномерно сходится на Е.

3. Элементы теории пределов для комплексных чисел

В моей работе полиномы рассматриваются только над полями и как функции от комплексной или вещественной переменной, так что моя работа является скорее главой математического анализа, а не алгебры, хотя теорема о существовании корня у любого отличного от константы полинома с комплексными коэффициентами (т.е. установление алгебраической замкнутости поля ) носит название основной теоремы алгебры.

Определение: Пусть задана последовательность комплексных чисел . Число называется ее пределом, если для любого действительного числа существует такой номер , что при выполняется неравенство . В этом случае пишут lim , а=lim, b=lim. Предельное соотношение lim=c равносильно соотношению , ибо

Страница:  1  2  3  4 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы