Основная теорема алгебры
Тогда так что
Правая часть есть полином от с нулевым свободным членом.
По лемме 1 для любого найдется такое=19 src="images/referats/7493/image057.png">, что как только что и требовалось доказать.
Лемма 3. Модуль полинома есть непрерывная функция.
Доказательство: Из неравенства следует, что для данного то , которое "обслуживает" , подходит и для . Действительно, при имеем
Лемма 4. (о возрастании модуля полинома). Если -полином, отличный от константы, то для любого М>0 существует такое R>0, что M,как только .
Это означает, что любая горизонтальная плоскость отрезает от поверхности конечный кусок, накрывающий часть круга |z|≤R.
Доказательство: Пусть
где полином от c нулевым свободным членом.
В силу леммы 1 для найдется такое , что при , будет . Модуль может быть сделан сколь угодно большим, именно, при будет . Возьмем Тогда при будет
и так что
Лемма 5. Точная нижняя грань значений достигается, т.е. существует такое, что при всех .
Доказательство: Обозначим точную нижнюю грань через . Возьмем последовательностью стремящихся к сверху. Каждая из этих чисел не является нижней гранью значений , ибо -точная нижняя грань. Поэтому найдутся такие, что . Воспользуемся теперь леммой о возрастании модуля. Для найдем такое , что при будет Отсюда следует, что при все . Последовательностью оказалась ограниченной, и из нее можно извлечь сходящуюся подпоследовательность . Пусть ее предел равен . Тогда в силу непрерывности . Кроме того, . Поэтому Итак , что и требовалось доказать.
Лемма 6. (Лемма Даламбера). Пусть полином отличный от константы, и пусть . Тогда найдется такая точка, что
Геометрический смысл этой леммы: если на поверхности дана точка, находящаяся выше плоскости , то на ней найдется другая точка, расположенная ниже первой.
Доказательство: Расположим полином по степеням
Тогда Идея доказательства состоит в том, чтобы за счет первого отличного от нуля слагаемого "откусить кусочек" от , а влияние дальнейших слагаемых сделать незначительным. Пусть – первое отличное от нуля слагаемое после , так что (если k>1). Такое слагаемое имеется, так как не константа. Тогда
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах