Некоторые понятия высшей матаматики
б) <0 (гиперболический вид) A’C’<0 (разные знаки). Пусть A’>0
A`=, , , тогда .
Если F0=0, то , получаем пару пересекающихся прямых.
Если F0>0, то (гипербола)
Если F0<0, то (гипербола, где оси поменялись местами)
в) (параболический тип) A`C`=0
(5)
а) D`=E`=0, пусть
б)
** в (5)
, где 2р=, если p>0, то парабола .
Теория пределов
Число а называется пределом последовательности xn для любого () сколь угодно малого положительного числа найдется номер, зависящий от , начиная с которого все члены последовательности отличаются от а меньше, чем на .
Предел последовательности
Под числовой последовательностью понимают функцию , заданную на множестве натуральных чисел т.е. функцию натурального аргумента.
Число a называется пределом последовательности xn (x=1,2,…): =а, если для любого сколь угодно малого >0, существует такое число N=N(), что для всех натуральных n>N выполняется неравенство .
1) , - натуральное число. Если xn=a, то (a, a, a, a) – стационарная последовательность.
2) , где a, d – const, тогда (a, a+d, a+2d,…a+(n-1)d)
xn+1=xn+d – рекуррентная формула.
3) Числа Фибоначчи. (1,1, 2, 3, 5, 8, 13, 21,…), где x1, x2 =1 и .
(*);
- эпсилон – окрестность числа а.
1. .
2.
Основные теоремы пределах
1. О единственном пределе. Последовательность имеет не более 1 предела.
2. Предельный переход в неравенстве.
3. О трех последовательностях. О сжатой последовательности.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах