Некоторые понятия высшей матаматики
2.
3. Угол между прямой и плоскостью
4.
Аналитическая геометрия на плоскости.
Прямоугольная декартова система координат на плоскости
Расстояние между 2 т
очками .
Если заданы точки А и В и точка С делит отрезок АВ в отношении , т.е. , то .
Уравнение прямой на плоскости
Ax+By+C=0;
Уравнение прямой в отрезках .
Уравнение прямой, проходящей через 2 заданные точки .
Уравнение прямой, проходящей через точку, под заданным углом к оси Ох ():
Расстояние от точки до прямой
1.
2.
3.
Окружность
Уравнение окружности с центром в M(a;b) радиусом R
Уравнение окружности с центром в начале координат
Эллипс
Эллипс – геометрическое место точек, для которых сумма расстояний до двух заданных точек плоскости (фокусов эллипса) есть величина постоянная, , чем расстояние между фокусами.
Обозначим M(x;y) – произвольная точка эллипса, 2с – расстояние между фокусами F1 и F2; 2а – сумма расстояний от точки М до F1 и F2 (a – большая полуось эллипса). - малая полуось эллипса. .
Тогда каноническое уравнение эллипса имеет вид .
Число называется эксцентриситетом эллипса и характеризует сплюснутость эллипса относительно осей . Если , то получается окружность. a=b.
Гипербола
Гипербола – геометрическое место точек, разность расстояний которых от двух заданных точек (фокусов) есть постоянная величина, меньшая, чем расстояние между фокусами.
Если M (x;y) – точка гиперболы; F1, F2 – фокусы, 2с – расстояние между фокусами, 2а – разность расстояний от точки М (х;y) до фокусов , где а – действительная полуось гиперболы. - мнимая полуось гиперболы.
Каноническое уравнение гиперболы .
Гипербола пересекает ось Ох в точках и , с осью Оу пересечений нет.
Гипербола имеет две асимптоты, уравнения которых .
Эксцентриситет гиперболы .
Парабола
Парабола – геометрическое место точек, равноудаленных от заданной точки F – фокуса и заданной прямой – директрисы параболы. Если ось абсцисс совпадает с перпендикуляром, опущенным из фокуса на директрису, а начало координат делит этот перпендикуляр пополам, то каноническое уравнение имеет вид .
Эксцентриситет параболы - отношение расстояния от точки параболы до директрисы к расстоянию от этой точки до фокуса.
Общее уравнение второго порядка
- общее уравнение кривой второго порядка
Параллельный перенос: .
Поворот осей:
- инварианты. - дискриминант
Если >0, то уравнение эллиптического вида
Если <0, то уравнение гиперболического типа
Если =0, то уравнение параболического типа
Выбираем угол так, чтобы B’=0, тогда
(1) (B=0)
1. . Осуществляем параллельный перенос для уничтожения членов .(**) ** подставляем в
(1)+
(2) (3)
а) >0 – эллиптический вид
A`C`>0 (одного знака)
Если F``>0, то пустое множество
Если F``=0, то одна точка (x``=0, y``=0)
Если F``<0, то получим эллипс в виде , где
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах