Математизация науки и ее возможности
Содержание
1. Введение 2
2. История математизации науки 3
3. Основные методы математизации 9
4. Пределы и проблемы математизации 18
5. Заключение 22
6. Список литературы 23
Введение
Предметом данной работы является проблема взаимоотношения математики и других наук, а конкретно методов и возможностей математики в приложении к ост
альным наукам.
Актуальность проблемы связана с многовековым развитием и проникновением математических методов в различные области человеческой деятельности, которое со временем только расширяется и углубляется. В настоящее время мы видим бурный рост числа математических приложений, связанный прежде всего с развитием компьютерных технологий, появлением глобальной сети Internet. Те математические идеи, которые раньше не покидали области академической науки, сейчас являются привычными в обиходе программистов, прикладников, экономистов.
Интерес автора к проблеме связан с профессиональной его деятельностью в области математики: хоть и не в прикладной математике, но в довольно близкой к ней – теории сложности вычислительных алгоритмов, а потому ему интересно узнать возможности математики в познании объективной реальности, приложении к другим наукам.
Реферат состоит из трех частей. В первой кратко описывается история многовекового проникновения математики в другие науки, и параллельно некоторые вехи в развитии самой математики. Во второй части описываются некоторые основные методы математизации, их сильные и слабые стороны. В третьей обсуждаются пределы математизации науки, проблемы, связанные с этим.
История математизации науки
Математика – царица наук.
К.Ф. Гаусс
Математика является одной из древнейших наук. Само слово “математика” имеет древнегреческие корни и означает “наука” или “знание”. Сейчас предмет изучения математики настолько огромен и разнообразен, что довольно трудно дать определение математики, как науки, занимающейся тем-то и тем-то. Хотя и узкое, но довольно простое определение дается в [1]: “Математика – наука о количественных отношениях и пространственных формах действительного мира”. Известно также шутливое определение своей науки, которое дают математики: “Математика – это то, чем я занимаюсь”.
Почти с самого зарождения математики, она была неразрывно связана с практической деятельностью человека. Более того, именно из этой повседневной практики и появились первые математические абстракции – натуральные числа и простейшие действия с ними: сложение, вычитание и умножение. Это произошло еще в доисторические времена.
С появлением первых государств (Древнего Египта, Вавилона, Китая) возникает потребности в развитии и углублении математических знаний. Развитие земледелия, архитектуры дает толчок к возникновению геометрии. Математические знания еще являлись только эмпирическими фактами, о необходимости их доказательства речи не возникало. Многие формулы представлялись в виде неких рецептов, следуя которым можно получить результат. Доказательством выступала практика и опыт: если какой-либо факт подтверждался практически, хотя бы приблеженно, но достаточно точно для практических нужд, он считался верным. Поэтому некоторые факты, открытые египтянами, оказались правильными лишь приближенно. Например, они считали, что отношение длины окружности к диаметру равно 3,16.
Древнегреческие философы и математики очень много сделали для развития математики. Это и практика строгих доказательств, введенная Фалесом, и замечательные теоремы Пифагора, и методы Архимеда вычисления объемов различных тел, и аксиоматическая система геометрии Евклида, и система буквенных обозначений Диофанта.
Пифагор пытался применить математику для нужд своей философской системы, согласно которой в основе мироздания – числа. Познать мир – это значит познать управляющие им количественные соотношения. Ему приписывается модель солнечной системы, в которой планеты движутся по сферическим орбитам, подчиняющимся некоторым количественным отношениям – так называемая гармония сфер. Также Пифагором и его школой были выявлены интересные числовые закономерности в музыке (высота тона колебания струны зависит от ее длины). Его учение дает первый пример целенаправленного применения математики в объяснении явлений природы, общества и мироздания в целом. Известно выражение, приписываемое Пифагору: “Все есть число”. Местами его учение носит мистический характер, далекий от реального положения вещей. Например, обожествление некоторых чисел: 1 – мать богов, всеобщее первоначало (видимо аналогия с началом натурального ряда), 2 – принцип противоположности в природе (так как противоположности всегда встречаются парами), 3 – природа как триединство первоначала и его противоречивых сторон (3=1+2), и т.д. Интересны (хотя и абсолютно не соответствующие действительности) его рассуждения о связи некоторых арифметических свойств чисел и общественными явлениями. Например, пифагорейцы выделяют так называемые совершенные числа: 6, 28, и т.д. – числа, равные сумме своих собственных (т.е. кроме самого числа) делителей: 6=1+2+3, 28=1+2+4+7+14. Эти числа, по Пифагору, отражают совершенство. Пары чисел, сумма собственных делителей одного из котрых равна другому и наоборот, как например, 284 и 220, называются дружественными и отражают явление дружбы в обществе. Пифагорейцы про верную дружбу говорили: “Они дружны, как 220 и 284”. Несмотря на эти наивные представления, такие числа до сих пор представляют интерес для теории чисел – области математики, занимающейся арифметическими свойствами целых чисел. Например, до сих пор не известно, бесконечно ли множество совершенных чисел, или существуют ли нечетные совершенные числа?
Последующий период, вплоть до 16 в. характеризуется довольно медленным процессом проникновения математики в другие науки. Решаются задачи, вызванные торговой деятельностью, как в Западной Европе, астрономией и мореплаванием (тригонометрия), как на Арабском Востоке и в Индии.
Бурное развитие как самой математики, так и ее приложений наблюдается в Новое время. Переход к новым капиталистическим отношениям, ослабление влияния церкви на философию и науку развязывают исследователям руки, делают их мысли смелее. Отныне “природа – не храм, а мастерская” и человек – не послушная марионетка в руках бога, а сам хозяин своей судьбы и исследователь окружающего мира.
Одним из первых, кто почувствовал веяние нового времени и начал по-новому подходить к науке, был Г.Галилей. Всем со школьной скамьи известны его опыты по изучению падения тел, которыми он опроверг тысячелетние заблуждения Аристотеля и его последователей. Для описания результатов, Галилей впервые применил математический аппарат: начала дифференциального исчисления. Известно выражение Галилея: “книга природы написана языком математики: буквы в ней – это треугольники, окружности, линии”.
И.Кеплер примерно в то же время, анализируя скурпулезные наблюдения Т.Браге за движением Марса, приходит к выводу, что планеты движутся по эллиптическим орбитам вокруг Солнца. При этом он использует теорию конических сечений, открытых более тысячи лет назад древнегреческим математиком Аполлонием Пергским. Это характерный пример того, как математическая теория, не получившая популярности при жизни автора и почти забытая, находит применение в важных вопросах науки спустя много лет.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах