Дифференцирование в линейных нормированных пространствах
|| F(x + h)-F(x)-Lxh ||<е||h|| (1)
То же самое сокращенно записывают так:
А(ч + р)-А(ч)-Дчр = щ(р)ю(2)
Из (I) следует, что дифференцируемое в точке х отображение непрерывно в этой точке. Выражение Lxh (представляющее собой, очевидно, при каждом hX элемент пространства У) называется сильным дифференциалом (и
ли дифференциалом Фреше) отображения F в точке х. Сам линейный оператор Lx называется производной, точнее, сильной производной отображения F в точке х. Мы будем обозначать эту производную символом F'(x).
Если отображение F дифференцируемо в точке, то соответствующая производная определяется единственным образом. В самом деле, равенство
||L1h — L2h|| = o(h) для операторов
Li ж (X, У), i = 1, 2,
возможно, лишь если L1= L2.
Установим теперь некоторые элементарные факты, непоcредственно вытекающие из определения производной.
Если F(x) = y0 = const, то F'(x) = О (т. е. F'(х)
в этом случае есть нулевой оператор).
Производная непрерывного линейного отображения L есть само это отображение:
L '(x)=L(3)
Действительно, по определению имеем
L(x + h)-L(x) = L(h).
3. (Производная сложной функции). Пусть X, У, Z — три нормированных пространства, U(x0)—окрестность точки х0Х, F — отображение этой окрестности в У, у0 = F(x0), V(yo) — окрестность точки у0 У и G — отображение этой окрестности в Z. Тогда, если отображение F дифференцируемо в точке хо, a G дифференцируемо в точке уо, то отображение Н = GF (которое определено в некоторой окрестности точки х0) дифференцируемо в точке хо и
H' (x0)=G' (y0)F' (x0) (4)
Действительно, в силу сделанных предположений
А(ч0 +о) = А(ч0) + Аэ (ч0) о +о1 (о ) и
G (уо + з) = G (уо) + G' (уо) з + о2 (з).
НоF'(x0) иG'(yo) — ограниченные линейные операторы. Поэтому
H (х0 + о) = G (уо + F' (x0) о + о1 о ) = G (уо) + G' (у0) (F' (х0) о + +о1 о)) +
+о2 (F' (x0) о + о1 (о )) = G (у0) + G' (уо) F' (х0) о + о3 (о).
Если F, G и Н — числовые функции, то формула (4) превращается в известное правило дифференцирования сложной функции.
4. Пусть F и G — два непрерывных отображения, действующих из X в Y. Если F и G дифференцируемы в точке х0, то и отображения F + G и aF (а — число) тоже дифференцируемы в этой точке, причем
(F + G)'(х0) = F'(х0) + G'(х0) (5)
(aF)'(x0) = aF'(x0).(6)
Действительно, из определения суммы операторов и произведения оператора на число сразу получаем, что
(F+G)(x0 + h) = F(x0 + h) + G(x0 + h) = F (х0) + G (х0) + F' (х0) h +
+G' (х0) h + o1 (h) и
aF (x0 + h) = aF (x0) + aF' (x0) h + o2 (h),
откуда следуют равенства (5) и (6).
Слабый дифференциал (дифференциал Гато)
Пусть снова F есть отображение, действующее из X в У. Слабым дифференциалом или дифференциалом Гато отображения F в точке х (при приращении h) называется предел
DF(x,h)=t=0=,
где сходимость понимается как сходимость по норме в пространстве У.
Иногда, следуя Лагранжу, выражение DF(x,h) называют первой вариацией отображения F в точке х.
Слабый дифференциал DF(x,h) может и не быть линеен по h. Если же такая линейность имеет место, т. е. если
DF (х, h) = F'c (х) h,
где F'c (х) — ограниченный линейный оператор, то этот оператор называется слабой производной (или производной Гато).
Заметим, что для слабых производных теорема о дифференцировании сложной функции, вообще говоря, неверна.
Формула конечных приращений
Пусть О — открытое множество в X и пусть отрезок [х0, х] целиком содержится в О. Пусть, наконец, F есть отображение X в У, определенное на О и имеющее слабую производную F'c в каждой точке отрезка [х0, x]. Положив Дх = х — хо и взяв произвольный функционал У*, рассмотрим числовую функцию
f(t) = (F(x0+t Дх)),
определенную при .Эта функция дифференцируема по t. Действительно, в выражении
можно перейти к пределу под знаком непрерывного линейного функционала. В результате получаем
F'(t) = (F'c(x0+tДx) Дx)
Применив к функции f на отрезке [0, 1] формулу конечных приращений, получим
f(l) = f(0) + f'(и), где 0< и <1,
(F(x)-F(x0))= ( F'c(x0+ и Дx) Дx)(7)
Это равенство имеет место для любого функционала У* (величина и зависит, разумеется, от). Из (7) получаем
|(F(x)-F(x0))| || F'c(x0+ и Дx)|| || Дx|| (8)
Выберем теперь ненулевой функционал так, что
(F (х) - F (х0)) = |||| || F(х) - F (хо) ||
(такой функционал существует в силу следствия 4 теоремы Хана — Банаха (см. п. 3 § 1 гл. IV)). При этом из (8) получаем
||(F (х) - F (x)|| || F'c(x0+ и Дx)|| ||Дx|| (Дx=x-x0) (9)
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах