Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью
Содержание
Введение
§1. Пространство Минковского
§2. Кривые в пространстве 1R4
§3. Понятие о линейчатых и развертывающихся поверхностях
§4. Торсы в пространстве 1R4
§5. Линии на торсах пространства Минковского
§6. Асимптотические линии на торсе пространства Минковского
Заключение
Список использованных источников
Введение
В работе исследуется геометр
ия поверхностей четырехмерного псевдоевклидова пространства индекса один, т.е. пространства Минковского.
Изучение дифференциальной геометрии в пространстве Минковского является актуальной задачей, поскольку пространство Минковского является пространством специальной теории относительности, и все результаты по дифференциальной геометрии этого пространства получают физическое истолкование. Каждое событие характеризуется тремя пространственными координатами и моментом времени t. Если уравнения физической теории (релятивистской механики, релятивистской гидродинамики, электродинамики и др.) записаны в виде соотношений, связывающих векторы и тензоры, заданные в пространстве Минковского, то их вид будет одинаковым во всех инерциальных системах отсчета. Тем самым основной принцип специальной теории относительности будет выполняться автоматически.
Интервал (расстояние между точками) в пространстве Минковского играет роль, аналогичную роли расстояния в геометрии евклидовых пространств. Он инвариантен при замен е одной инерциальной системы отсчета на другую, так же, как расстояние инвариантно при поворотах, отражениях и сдвигах начала координат в евклидовом пространстве.
Данная работа состоит из шести параграфов.
В первом параграфе происходит знакомство с пространством Минковского, дается определение этого пространства, его основные особенности, перечисляются типы прямых и плоскостей.
Во втором параграфе исследуются кривые пространства 1R4, вводится понятие соприкасающегося флага. Для кривых с заданным соприкасающимся флагом строится канонический репер и выводятся деривационные формулы.
Третий параграф посвящен изучению развертывающихся и линейчатых поверхностей. Изучение основных понятий этого параграфа поможет перейти к рассмотрению торсов.
В четвертом параграфе рассматриваются торсы с псевдоевклидовой касательной плоскостью и соприкасающимся флагом вида {M, R1, 1R2, 1R3}. Для таких торсов строится канонический репер кривой пространства 1R4 и выводятся деривационные формулы.
В последующих двух параграфах исследуются линии на торсах указанного типа с помощью построенного канонического репера. Дается понятие геодезических линий, решается вопрос о существовании (1,2)-,(2,2)-,(1,3)-,(2,3)- геодезических линий на торсе с псевдоевклидовой касательной плоскостью. Вводится понятие нормальной кривизны кривой, вектора кривизны, определяются асимптотические линии.
§1. Пространство Минковского
Пространством Минковского называется четырехмерное псевдоевклидово пространство индекса 1.
Герман Минковский предложил данное пространство в 1908 году в качестве геометрической интерпретации пространства-времени специальной теории относительности.
Интервал в пространстве Минковского играет роль, аналогичную роли расстояния в геометрии евклидовых пространств. Он инвариантен при замене одной инерциальной системы отсчета на другую, так же, как расстояние инвариантно при поворотах, отражениях и сдвигах начала координат в евклидовом пространстве.
После евклидовых пространств индекса k=0, т.е. собственно евклидовых, наибольший интерес представляют евклидовы пространства индекса k=1 (они, конечно, принадлежат к псевдоевклидовым пространствам). Евклидово пространство индекса 1 представляет интерес с точки зрения теории дифференциальных уравнений (волновое уравнение с п аргументами) и особенно с точки зрения теории относительности. В последнем случае играет роль именно четырехмерное евклидово пространство индекса 1.
Данное пространство может быть получено на базе четырехмерного аффинного пространства А, с помощью введения скалярного умножения векторов.
Пусть некоторый репер аффинного пространства А4, где , .
Введем скалярное умножение по формуле:
. (1)
Пространство A4, для векторов которого введено скалярное умножение по формуле (1) называется четырехмерным псевдоевклидовым пространством индекса 1 или пространством Минковского. Обозначается 1R4.
Скалярный квадрат вектора определяется по формуле:
. (2)
При этом вектора репера будут иметь следующие скалярные квадраты:
(3)
Определение 1.1. Длиной векторав пространстве Минковского будем называть число:
Определение 1.2. Векторы пространства Минковского называются ортогональными, если их скалярное произведение равно нулю.
Таким образом, в пространстве 1R4 будут существовать векторы трех типов.
1. Векторы действительной длины при .
Например, (2,1,1,2).
2. Векторы мнимой длины при .
Например, (3,1,1,1).
3. Ненулевые векторы нулевой длины при .
Например, (6,2,4,4).
Такие векторы называются изотропными. Они лежат на изотропном конусе.
|
|
|
Уравнение конуса будет иметь вид
-(x0)2+(x1)2+(x2)2+(x3)2=0
Такой конус также называют световым.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах