Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью

Таким образом, плоскость определяется точкой L торса и векторами , и следовательно, совпадает с соприкасающейся плоскостью ребра возврата g.

lspacing="0" cellpadding="0" align="center">

Рис.4.3

Получена теорема.

Теорема 4.1. Касательная плоскость к торсу в произвольной точке прямолинейной образующей совпадает с соприкасающейся плоскостью к ребру возврата в точке касания прямолинейной образующей.

Построим канонический репер в произвольной точке N торса. Будем считать параметр u естественным параметром ребра возврата. Тогда согласно

(9):

Введем следующие обозначения:

Тогда - вектор мнимой длины, а - вектор единичной длины, взаимно ортогональные и лежат в касательной плоскости к торсу в точке N, совпадающей с соприкасающейся плоскостью ребра возврата, причем идет по прямолинейной образующей, а ему ортогонален.

Вектора получим из векторов соприкасающегося репера ребра возврата параллельным переносом в точку L. При этом получим репер в произвольной точке L торса, с условием

.(33)

Уравнение (33) целиком определяется торсом. Этот репер будем называть каноническим репером торса.

Найдем деривационные формулы канонического репера торсас учетом того, что зависят только от u. С учетом (14) и (15):

и (34)

§5. Линии на торсах пространства Минковского

Рассмотрим торс в пространстве Минковского, заданный уравнением (29) .

Будем считать, что соприкасающийся флаг ребра возврата имеет тип 50: {M, 1R1, 1R2, 1R3, 1R4}, где параметр u есть естественный параметр на ребре возврата . В данном случае на торсе строится канонический репер {M, }. Деривационные формулы этого репера имеют вид (34).

Определение 5.1. Кривая d: u=u(t); v=v(t) (35) на торсе Т называется (k,n) – геодезической, если соприкасающаяся n - плоскость этой кривой в каждой точке содержит k – мерную нормаль к торсу.

Возможны варианты: (1,2); (1,3); (2,3). Выясним существуют ли такие геодезические кривые на торсе данного типа. Касательная плоскость к торсу в точке L есть плоскость , а нормальная плоскость к торсу . Найдем соприкасающуюся 2-плоскость линии d: r=r(u(t),v(t)). Эта плоскость определяется так: . Находим производные вектор - функции, преобразуем их с помощью деривационных формул (34):

(36)

(37)

+++

+++++

++

++

++

+++

++

++

++++

+

+

+(

++

+)+(+)+(38)

Нормаль к торсу зададим в виде: . С другой стороны, нормаль к поверхности, исходя из определения, содержится в соприкасающейся 2-плоскости , т.е. . Составим уравнение

=p()+q().

Сгруппировав коэффициенты при , получаем систему:

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы