Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью
(40)
На торсе с касательной псевдоевклидовой плоскостью асимптотические линии есть прямолинейные образующие торса, а также линии v=u.
Нормальная кривизна кривой в точке N зависит только от , т.
е. от направления в касательной плоскости.
Заключение
В работе исследуется геометрия поверхностей пространства Минковского.
В пространстве 1R4 рассматриваются торсы, то есть поверхности образованные касательными к некоторой кривой пространства Минковского, называемой ребром возврата для этого торса. Рассмотрен класс таких поверхностей, ребро возврата которых имеет соприкасающийся флаг вида {M, R1, 1R2, 1R3}.
Для торсов такого класса решены следующие задачи:
1. построен канонический репер торса;
2. получены деривационные формулы построенного канонического репера;
3. определено понятие (n,k) – геодезических линий на торсе;
4. получена теорема о существовании (1,2)-, (2,3) – геодезических линий на исследуемом торсе;
5. вводится обобщение понятия асимптотических линий на поверхности пространства Минковского, находятся асимптотические линии на торсе рассматриваемого класса.
Результаты проводимого исследования докладывались на республиканской научно-практической конференции молодых ученых, аспирантов и студентов «Современные проблемы математического моделирования и новые образовательные технологии в математике» (Брест, 23 апреля 2009 года). На основании доклада будет напечатана статья в сборнике материалов конференции.
Список использованных источников
1. Атанасян, Л.С. Геометрия: учеб. пособие в 2 ч./ Л.С. Атанасян, Г.Б. Гуревич. – М.: Просвещение, 1976. – Ч.2. – 488 с.
2. Базылев, В.Т. Геометрия: в 2 т./ В.Т. Базылев, К.И. Дуничев. - М.: Просвещение, 1972. – Т.2. – 352 с.
3. Бакельман, И.Я. Введение в дифференциальную геометрию: учебное пособие/ И.Я. Бакельман, А.Л. Вернер, Б.Е. Кантор. – М.: Наука, 1973. – 437 с.
4. Матвеев, Н.М. Дифференциальные уравнения: учеб. пособие для студ. пед. ин-тов по физ. – мат. спец./ Н.М. Матвеев. – М.: Просвещение, 1988. – 464 с.
5. Погорелов, А.В. Геометрия: учебник для студентов математических специальностей университетов и пед. институтов/ А.В. Погорелов. – М.: Наука, 1974. – 173 с.
6. Позняк, Э.Г. Геометрия: учеб. пособие/ Э.Г. Позняк, Е.В. Шикин. - М.: изд-во МГУ, 1990. – 384 с.
7. Рашевский, П.К. Курс дифференциальной геометрии/ П.К. Рашевский. – М.: Просвещение, 1982. – 220 с.
8. Рашевский, П.К. Риманова геометрия и тензорный анализ/ П.К. Рашевский. – М.: Наука, 1964. – 538 с.
9. Тайманов, И.А. Лекции по дифференциальной геометрии/ И.А.Тайманов. – Ижевск: Институт компьютерных исследований, 2002. – 176 с.
10. Фиников, С.П. Дифференциальная геометрия: курс лекций для мат. ф-та МГУ/ М.С. Фиников. – М.: московский университет, 1961. – 150 с.
11. Шварц, Д. Дифференциальная геометрия и топология/ Д. Шварц. – М.: Мир, 1970. – 224 с.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах