Дифференциальная геометрия торсов в пространстве 1R4 с псевдоевклидовой касательной плоскостью

Поскольку каждая 3-плоскость ортогональна некоторой прямой, то существует только 3 типа 3-плоскостей.

Определение 1.3. Ортогональным дополнением к векторному пространству LÌ1R4 называется векторное пространство, образованное всеми векторами, ортогональными к пространству L.

Пример. Найдем множество векторов, ортогональных к вектору . Если вектор ортогонален , то . Отсюда,

=.

Таким образом, ортогональным дополнением к вектору является множество векторов . Эти векторы определяют 3-плоскость которое является 3-плоскостью вида 1R3. Следовательно, R1^1R3. Это означает, что к прямой R1 ортогональной является 3-плоскость типа1R3. Верно и обратное.

Аналогично найдем множество векторов ортогональных к вектору. Если вектор ортогонален , то . Отсюда,

=.

Множество векторов, ортогональных вектору , имеет вид и определяет 3-плоскость которое является 3-плосткостью вида R3. Следовательно, 1R1^R3. Это означает, что к прямой 1R3 ортогональной является 3-плоскость типа R3. Верно и обратное.

Рассмотрим вектор () и найдем множество векторов ортогональных к данному вектору. Если вектор ортогонален (), то .

Получаем, что

=.

Отсюда, , а — произвольные. - это множество векторов, ортогональных вектору () и определяет 3-плоскость которое является 3-плосткостью вида . Значит, ^. Это означает, что к прямой ортогональной является 3-плоскость типа . Верно и обратное.

Заметим, что Ì.

Найдем множество векторов, ортогональных к векторам . Если вектор ортогонален , то Отсюда,

Û

Таким образом, ортогональным дополнением к векторам является множество векторов . Эти векторы определяют 2-плоскость которая является 2-плосткостью вида 1R2. Следовательно, R2 ^1R2 (к двумерной плоскости R2 ортогональной является плоскость вида 1R2).

Найдем множество векторов, ортогональных к векторам . Если вектор ортогонален , то Отсюда,

Û

Таким образом, ортогональным дополнением к векторам является множество векторов . Эти векторы определяют 2-плоскость которое является 2-плосткостью вида R2, Следовательно, R2 ^1R2 (к двумерной плоскости R2 ортогональной является плоскость вида 1R2). Верно и обратное.

Найдем множество векторов, ортогональных к векторамЕсли вектор ортогонален , то

Отсюда,

Û

Û

Таким образом, ортогональным дополнением к векторам является множество векторов . Эти векторы определяют 2-плоскость которая является 2-плосткостью вида . Следовательно, ^.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы