Особенности системы транспортировки газов во время тренировки на выносливость
Парциальное давление углекислого газа выше в венозной крови (46 мм рт. ст.), чем в альвеолярном воздухе (40 мм рт. ст.). Таким образом, благодаря разнице парциальных давлений обеспечивается переход кислорода из альвеолярного воздуха в кровь, а углекислого газа в альвеолярный воздух. Поступившие в кровь молекулы кислорода взаимодействуют с гемоглобином эритроцитов, образуя оксигемоглобин. >Так кровь из венозной превращается в артериальную.
По легочным венам артериальная кровь поступает в левое предсердие, потом – в левый желудочек, отсюда — в большой круг кровообращения, которым переносится к тканям.
Углекислый газ из венозной крови поступает в легочные пузырьки и во время выдоха выводится из организма. Скорость диффузии газов в легочных капиллярах довольно велика: за время течения крови по легочным капиллярам (в среднем 0,3 с) давление газов в крови и альвеолах выравнивается. Это связано с большой общей поверхностью капилляров и особенностями строения альвеолярно-капиллярного барьера [3; 135].
Несмотря на периодическое поступление атмосферного воздуха, состав альвеолярного воздуха постоянный, хотя и отличается от вдыхаемого. Это обеспечивается интенсивным обменом газов, то есть непрерывным поступлением кислорода и удалением углекислого газа, и имеет большое значение для поддержания постоянства внутренней среды организма (гомеостаза).
2. АДАПТАЦИЯ ДЫХАТЕЛЬНОЙ СИСТЕМЫ ПРИ ФИЗИЧЕСКОЙ НАГРУЗКЕ
Организм осуществляет тонкое регулирование напряжения О2 и СО2 в крови – их содержание остается относительно постоянным, несмотря на колебания количества доступного кислорода и потребности в нем, которая во время интенсивной мышечной работы может увеличиваться в 20 раз. Частота и глубина дыхания регулируются дыхательным центром, нейроны которого расположены в различных отделах ЦНС; главными из них являются продолговатый мозг и мост. Дыхательный центр по соответствующим нервам ритмично посылает к диафрагме и межреберным мышцам импульсы, которые вызывают дыхательные движения. В основе своей ритм дыхания является непроизвольным, но может изменяться в некоторых пределах высшими центрами головного мозга, что свидетельствует о возможности произвольного влияния на нижележащие отделы дыхательного центра.
Саморегуляция вдоха и выдоха
Локализация дыхательного центра. В продолговатом мозге находится главная часть дыхательного центра. Об этом свидетельствуют исследования П.Флуранса (1794-1867) [6;217]. Он обнаружил, что разрушение медиальной части продолговатого мозга в нижнем углу ромбовидной ямки ведет к полной остановке дыхания. Позже (1885) Н. А. Миславский [7;39] установил наличие двух структур, ответственных за вдох и выдох.
Мост играет важную роль в регуляции продолжительности фаз вдоха, выдоха и паузы между ними.
Мотонейроны спинного мозга получают импульсы от нейронов продолговатого мозга и посылают их к дыхательным мышцам по диафрагмальному и межреберным нервам. Центр диафрагмальных нервов находится в основном в 3-4-м шейных сегментах спинного мозга. Центры межреберных нервов, иннервирующих мускулатуру грудной клетки, локализуются в грудном отделе спинного мозга (4 – 10 сегменты), иннервация мышц живота осуществляется Th4 – L3 – сегментами.
В регуляции дыхания принимают участие также средний мозг, гипоталамус, лимбико-ретикулярный комплекс, кора большого мозга.
Дыхательные нейроны (нейроны, которые возбуждаются в различные фазы дыхательного цикла) обнаружены почти на всем протяжении продолговатого мозга. Однако в обеих половинах продолговатого мозга есть участки ретикулярной формации, где имеются основные скопления дыхательных нейронов. В правой и левой половинах продолговатого мозга имеется по два таких скопления - дорсальное и вентральное. Они локализуются вблизи задвижки (obex), которая расположена у нижнего угла ромбовидной ямки.
Нейронная организация автоматии дыхательного центра. Под автоматией дыхательного центра понимают циркуляцию возбуждения в его нейронах, обеспечивающую саморегуляцию вдоха и выдоха. Взаимодействие нейронов дыхательного центра заключается в следующем. Ритмическая смена вдоха и выдоха (постоянное их чередование) обеспечивается циркуляцией возбуждения вдыхательных нейронах продолговатого мозга- главной части дыхательного центра, а также взаимодействием импульсации нейронов продолговатого мозга с импульсацией дыхательных нейронов моста и рефлексогенных зон, главной из которых является легочная (механорецепторы). При этом эфферентные импульсы ритмично поступают по диафрагмальному и межреберным нервам к дыхательным мышцам, что ведет к их сокращению (вдох). Прекращение импульсации сопровождается расслаблением дыхательной мускулатуры (выдох) [8;238].
Цикл дыхания у человека состоит из вдоха, выдоха и паузы. С учетом этого дыхательные нейроны классифицируют на группы, основными из которых являются: 1) ранние инспираторные и экспираторные нейроны; 2) поздние инспираторные и экспираторные нейроны; 3) полные инспираторные и экспираторные нейроны.
Большинство экспираторных нейронов являются антиинспираторными, и только часть из них посылают свои импульсы к мышцам выдоха. Они возбуждаются под влиянием афферентной импульсации блуждающих нервов и нейронов моста. Большинство инспираторных нейронов обладают непрерывной спонтанной импульсной активностью, которая преобразуется в фазную благодаря тормозным реципрокным влияниям экспираторных и поздних инспираторных нейронов [9;218].
Каждый дыхательный цикл начинается с возбуждения ранних инспираторных нейронов. Затем возбуждение переходит на полные инспираторные нейроны. В процессе циркуляции возбуждения импульсы по возвратным связям поступают к предшествующим нейронам и тормозят их. Полные инспираторные и экспираторные нейроны по нисходящим путям посылают импульсы к мотонейронам спинного мозга, иннервирующим дыхательную мускулатуру (рис. 6.1).
Представленная схема саморегуляции вдоха и выдоха на рис. 6.1 не отражает ряд известных в настоящее время процессов взаимодействия дыхательных нейронов моста, продолговатого мозга и афферентных импульсов от рефлексогенных зон, но она хорошо иллюстрирует принципиальную структуру механизмов саморегуляции вдоха и выдоха. Показаны три источника импульсов, обеспечивающих смену вдоха на выдох, торможение инспираторных нейронов (Ир и И): от нейронов моста (М), от самих инспираторных нейронов (Ир и И) и от рецепторов легких, импульсация которых поступает по блуждающим нервам [10;201].
Роль рефлексогенных зон в регуляции вдоха и выдоха
Роль блуждающих нервов в регуляции вдоха и выдоха доказали Геринг и Брейер в опыте с раздуванием легких воздухом в различные фазы дыхательного цикла. Оказалось, что раздувание легких воздухом тормозит вдох, после чего наступает выдох. Уменьшение объема легких (забор воздуха) тормозит выдох, ускоряет вдох. После перерезки блуждающих нервов раздувание легких не изменяет характер дыхания – тормозной эффект отсутствует.
Другие рефераты на тему «Медицина»:
- Методы защиты и поддержки пациента во время операции
- Сифилитический и раковый перитонит, характеристика перитонита у детей
- Методы обработки корневых каналов зубов с применением современных медикаментозных средств при лечении периодонтита
- Лекарственные средства влияющие на дыхательную систему
- Теоретические основы ампулирования
Поиск рефератов
Последние рефераты раздела
- Особенности лечения и тракционно-экстензионной терапии на аппарате Kinetrac KNX-7000
- Остеохондроз, методики лечения
- Тракционно-экстензионная терапия у больных остеохондрозом пояснично-крестцового отдела позвоночника
- Болезни, возникающие от курения. Профилактика курения
- Болезни органов дыхания
- Болезни желчевыводящих путей и печени
- Анатомия и физиология артерий нижних конечностей. Этиология и патогенез