Лисп-реализация алгоритма кодирования информации RSA

Содержание

Введение

1. Постановка задачи

2. Математические и алгоритмические основы решения задачи

3. Функциональные модели и блок-схемы решения задачи

4. Программная реализация решения задачи

5. Пример выполнения программы

Заключение

Список использованных источников и литературы

Введение

Испокон веков не было ценности большей, чем информац

ия. ХХ век – век информатики и информатизации. Технология дает возможность передавать и хранить все большие объемы информации. Это благо имеет и оборотную сторону. Информация становится все более уязвимой по разным причинам:

• возрастающие объемы хранимых и передаваемых данных;

• расширение круга пользователей, имеющих доступ к ресурсам ЭВМ, программам и данным;

• усложнение режимов эксплуатации вычислительных систем.

Поэтому все большую важность приобретает проблема защиты информации от несанкционированного доступа (НСД) при передаче и хранении. Сущность этой проблемы – постоянная борьба специалистов по защите информации со своими «оппонентами».

Для того чтобы ваша информация, пройдя шифрование, превратилась в «информационный мусор», бессмысленный набор символов для постороннего, используются специально разработанные методы – алгоритмы шифрования. Такие алгоритмы разрабатываются учеными математиками или целыми коллективами сотрудников компаний или научных центров.

Алгоритмы шифрования делятся на два больших класса: симметричные (AES, ГОСТ, Blowfish, CAST, DES) и асимметричные (RSA, El-Gamal). Симметричные алгоритмы шифрования используют один и тот же ключ для зашифровывания информации и для ее расшифровывания, а асимметричные алгоритмы используют два ключа – один для зашифровывания, другой для расшифровывания.

Если зашифрованную информацию необходимо передавать в другое место, то в этом надо передавать и ключ для расшифрования. Слабое место здесь – это канал передачи данных – если он не защищенный или его прослушивают, то ключ для расшифрования может попасть к злоумышленику. Системы на ассиметричных алгоритмах лишены этого недостатка. Поскольку каждый участник такой системы обладает парой ключей: Открытым и Секретным Ключом.

Алгоритм RSA стоит у истоков асимметричной криптографии. Он был предложен тремя исследователями – математиками Рональдом Ривестом (R. Rivest), Ади Шамиром (A. Shamir) и Леонардом Адльманом (L. Adleman) в 1977–78 годах.

1. Постановка задачи

Разработать и отладить программу на языке Лисп реализующую криптографический алгоритм кодирования информации с открытым ключом – RSA.

Шифрование:

Входные данные: M – сообщение, состоящее из целых чисел.

Выходные данные: T – Зашифрованное сообщение.

Дешифрование:

Входные данные: T – Результат шифрования.

Выходные данные: M – изначальное сообщение.

Пример 1.

1. Выбираем два простых числа: p = 3557, q = 2579.

2. Вычисляем их произведение: n = p · q = 3557 · 2579 = 9173503.

3. Вычисляем функцию Эйлера: φ(n) = (p-1) (q-1) = 9167368.

4. Выбираем открытый показатель: e = 3.

5. Вычисляем секретный показатель: d = 6111579.

6. Публикуем открытый ключ: (e, n) = (3, 9173503).

7. Сохраняем секретный ключ: (d, n) = (6111579, 9173503).

8. Выбираем открытый текст: M = 127.

9. Вычисляем шифротекст: P(M) = Me mod n = 10223mod 9173503 = 116.

10.Вычислить исходное сообщение: S(C) = Cd mod n = 1166111579mod 9173503 = 1022.

Пример 2.

1. Выбираем два простых числа: p = 79, q = 71.

2. Вычисляем их произведение: n = p · q = 79 · 71 = 5609.

3. Вычисляем функцию Эйлера: φ(n) = (p-1) (q-1) = 5460.

4. Выбираем открытый показатель: e = 5363.

5. Вычисляем секретный показатель: d = 2927.

6. Публикуем открытый ключ: (e, n) = (5363, 5609).

7. Сохраняем секретный ключ: (d, n) = (2927, 5609).

8. Выбираем открытый текст: M = 23.

9. Вычисляем шифротекст: P(M) = Me mod n = 235363mod 5609 = 5348.

10.Вычислить исходное сообщение: S(C) = Cd mod n = 53482927mod 5609 = 23.

2. Математические и алгоритмические основы решения задачи

Первым этапом любого асимметричного алгоритма является создание пары ключей: открытого и закрытого и распространение открытого ключа «по всему миру». Для алгоритма RSA этап создания ключей состоит из следующих операций:

1). Выбираются два простых числа p и q

2). Вычисляется их произведение n (=p*q)

3). Выбирается произвольное число e (e<n), такое, что

НОД (e, (p-1) (q-1))=1,

то есть e должно быть взаимно простым с числом (p-1) (q-1).

4). Методом Евклида решается в целых числах уравнение

e*d+(p-1) (q-1)*y=1.

Здесь неизвестными являются переменные d и y – метод Евклида как раз и находит множество пар (d, y), каждая из которых является решением уравнения в целых числах.

5). Два числа (e, n) – публикуются как открытый ключ.

6). Число d хранится в строжайшем секрете – это и есть закрытый ключ, который позволит читать все послания, зашифрованные с помощью пары чисел (e, n).

Как же производится собственно шифрование с помощью этих чисел:

Отправитель разбивает свое сообщение на блоки, равные k=[log2(n)] бит, где квадратные скобки обозначают взятие целой части от дробного числа.

Подобный блок может быть интерпретирован как число из диапазона (0; 2k-1). Для каждого такого числа (назовем его mi) вычисляется выражение

ci=((mi)e) mod n.

Блоки ci и есть зашифрованное сообщение Их можно спокойно передавать по открытому каналу, поскольку операция возведения в степень по модулю простого числа, является необратимой математической задачей. Обратная ей задача носит название «логарифмирование в конечном поле» и является на несколько порядков более сложной задачей. То есть даже если злоумышленник знает числа e и n, то по ci прочесть исходные сообщения mi он не может никак, кроме как полным перебором mi.

А вот на приемной стороне процесс дешифрования все же возможен, и поможет нам в этом хранимое в секрете число d. Достаточно давно была доказана теорема Эйлера, частный случай которой утвержает, что если число n представимо в виде двух простых чисел p и q, то для любого x имеет место равенство

(x(p-1)(q-1)) mod n = 1.

Для дешифрования RSA-сообщений воспользуемся этой формулой. Возведем обе ее части в степень

(-y): (x(-y)(p-1)(q-1)) mod n = 1(-y) = 1.

Теперь умножим обе ее части на x:

(x(-y)(p-1)(q-1)+1) mod n = 1*x = x.

А теперь вспомним как мы создавали открытый и закрытый ключи. Мы подбирали с помощью алгоритма Евклида d такое, что

e*d+(p-1) (q-1)*y=1,

то есть

e*d=(-y) (p-1) (q-1)+1.

Следовательно, в последнем выражении предыдущего абзаца мы можем заменить показатель степени на число (e*d). Получаем

(xe*d) mod n = x.

То есть для того чтобы прочесть сообщение ci=((mi)e) mod n достаточно возвести его в степень d по модулю m:

((ci)d) mod n = ((mi)e*d) mod n = mi.

На самом деле операции возведения в степень больших чисел достаточно трудоемки для современных процессоров, даже если они производятся по оптимизированным по времени алгоритмам. Поэтому обычно весь текст сообщения кодируется обычным блочным шифром (намного более быстрым), но с использованием ключа сеанса, а вот сам ключ сеанса шифруется как раз асимметричным алгоритмом с помощью открытого ключа получателя и помещается в начало файла.

Страница:  1  2  3 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы