Программное обеспечение системы принятия решений адаптивного робота
Таким образом, подсистема должна включать по крайней мере следующие 4 функционально различные компоненты (рис. 3.4):
- коммуникатор (F1);
- планировщик (F2);
- координатор (F3);
- исполнитель (F4).
4. Метод координации и планирования
4.1 Координация исполнения
В
оспользуемся подходом, состоящим в представлении этого уровня системы управления как сети специальным образом построенных конечных автоматов.
4.1.1 Сетевой автомат
Назовем сетевым автоматом NA с p входами и q выходами следующий кортеж:
NA = <I, O, U, X, Z, f, h> (4.1)
где I = {i1, i2,…, ip} – множество входов;
O = {o1, o2,…, oq} – множество выходов;
U = {u1, u2,…, um} – входной алфавит;
X = {x1, x2,…, xn} – множество состояний;
Z = {z1, z2,…, zk} – выходной алфавит;
f: X´V®X – одношаговая переходная функция, где VÌU´I;
h: X´V®W – выходная функция, где WÌZ´O.
Элементы множеств V и W будем называть обобщенными входными и выходными алфавитами соответственно.
Введем дополнительно специальный символ e, который является элементом и входного и выходного алфавитов. Этот символ мы будем интерпретировать как пустой символ, который всегда присутствует на выделенном входе автомата, так что если в описании перехода из некоторого состояния присутствует входной символ e, тогда осуществляется соответствующий переход. Появление символа e в выходном канале означает, что на выход ничего не поступает. Здесь надо заметить, что полученный в результате автомат не является автоматом Мили, поскольку он не сохраняет длину отображения.
Далее при изображении графа сетевого автомата мы будем использовать следующую нотацию: через i.u будем обозначать символ входного алфавита uÎU, пришедший по входному каналу i Î I; через z.o будем обозначать символ выходного алфавита zÎZ, поступивший в выходной канал oÎO.
Введем теперь понятие сети автоматов как набора автоматов, объединенных своими входами и выходами и взаимодействующих путем передачи / приема символов своих выходных / входных алфавитов.
Назовем сетью автоматовL связный мультиграф:
L = (E, C), (4.2)
где E = {e1, e2,…, en} – множество вершин графа;
C = {c1, c2,…, cm} – множество направленных дуг, ci = (ej, ek).
Вершина графа интерпретируется как сетевой автомат, а дуга – как канал связи между автоматами, используемый для обмена элементами входных / выходных алфавитов.
Работа сети заключается в параллельном функционировании всех составляющих ее автоматов, поведение каждого из которых, в свою очередь, определяется его текущим состоянием, а также состоянием входных каналов.
Пусть теперь L = (E, C) – сеть автоматов, и пусть распределенная система состоит из подсистем, каждая из которых описывается конечным автоматом, так что M = {Mi} – множество моделей подсистем.
Тогда, если M Ì E, то
Lc = {Ec, Cc}, (4.3)
где Ec = E \ M, будем называть управляющей структурой для распределенной системы, представленной моделями {Mi}.
Ясно, что будучи соединенной с реальными подсистемами, управляющая структура обеспечит некоторое поведение подсистем, зависящее от топологии управляющей структуры и атрибутов сетевых автоматов, входящих в ее состав.
4.1.2 Управляющая структура как средство координации
В соответствии с изложенным выше, роботы Rb1, Rb2 будем описывать как конечные автоматы
Rbi = (Ii, Oi, Ui, Xi, Zi, fi, hi), i=1,2 (4.4)
со следующими атрибутами:
Ii ={i0}; Oi ={i0}; Ui ={g}; xi ={0, 1, 2}; Zi ={y, Y}, i = 1,2 (4.5)
|
4.1.3 Анализ функционирования планировщика
Приведенный выше способ координации является весьма эффективным средством для построения только централизованных систем управления. Действительно, если нижний уровень управляющей структуры представляет собой по сути дела логические регуляторы и может быть без труда ассоциирован с локальными системами управления, то верхние уровни обмениваются данными со всеми подсистемами, участвующими в выполнении задания, и потому являются фрагментом центральной системы управления.
Естественный способ преодоления этой трудности состоит в формировании одноуровневой управляющей структуры, т.е. такой, у которой число автоматов совпадает с числом подсистем, разрешив этим автоматам обмениваться данными непосредственно между собой, а не с верхним уровнем. Это, с одной стороны, приводит к усложнению довольно простого логического регулятора, а с другой стороны позволяет обойтись без центральной системы управления. На рис. 4.3 показана соответствующая архитектура системы управления (модули, не связанные с координацией, не показаны).
4.2 Планирование исполнения информационно-двигательных действий
Другие рефераты на тему «Программирование, компьютеры и кибернетика»:
Поиск рефератов
Последние рефераты раздела
- Основные этапы объектно-ориентированного проектирования
- Основные структуры языка Java
- Основные принципы разработки графического пользовательского интерфейса
- Основы дискретной математики
- Программное обеспечение системы принятия решений адаптивного робота
- Программное обеспечение
- Проблемы сохранности информации в процессе предпринимательской деятельности