Оборудование для биотехнологического производства
Для биокатализаторов, иммобилизованных в полых волокнах, создан специальный реактор. Раствор субстрата протекает через сосуд, рыхло заполненный полыми волокнами, во внутреннем объеме которых содержится биокатализатор. В таком биореакторе достигнута 90%-ная конверсия фумарата аммония в аспартат с помощью клеток Е, coli.
Имеются сообщения о пневматических (эрлифтных, колоночных) биореакторах
для иммобилизованных растительных клеток.
Колонны с насадкой иммобилизованного катализатора в настоящее время используются в нескольких промышленных процессах, и есть все основания полагать, что в ближайшее время область их применения существенно расширится. В таких реакторах, называемых реакторами с неподвижным слоем катализатора, с помощью иммобилизованных ферментов осуществляют изомеризацию глюкозы, частичный селективный гидролиз пенициллина, селективное расщепление смеси производных рацемических аминокислот. В реакторах с неподвижным слоем изучались также процессы с участием иммобилизованных клеток.
В простейшем и часто довольно успешно применяющемся математическом описании работы реактора с неподвижным слоем катализатора в основу положена модель реактора полного вытеснения, модифицированная с целью учета влияния каталитической насадки на структуру течений и кинетику реакций. Поверхностную скорость потока через реактов определяют как объемную скорость потока исходных веществ, отнесенного к площади поперечного сечения пустот, которое представляет собой произведение общей площади поперечного сечения колонны на долю пустот .
Для простой реакции S>T, протекающей с собственной скоростью v = v (s, p), скорость образования продукта в единице объема гранулы иммобилизованного катализатора в какой-либо определенной точке реактора равна:
vобщ = (ss, ps)v(ss, ps)
Здесь ss и ps концентрации субстрата и продукта соответственно на наружной поверхности частицы катализатора в данной точке объема реактора. Как указано в уравнении (1), в общем случае коэффициент эффективности , определяющий скорость диффузии в частицу катализатора, и скорость реакции v зависят как от ss, так и от ps.
Математический балланс по сустрату в сферический частице катализатора радиусом R в стационарном состоянии будет выражаться уравнением:
4R2ks(sss) = 4/3R3(ss, ps)v(ss, ps)
или: Скорость диффузии субстрата из жидкой фазы = скорости трансформации субстрата внутри частицы в результате реакции.
Преобразование и подстановка величин уравнений (1) и (2) дает выражение, позволяющее определить общую скорость утилизации субстрата, отнесенную к единице объема частиц катализатора, если известна концентрация субстрата в жидкой фазе.
Течение вокруг частицы, составляющих слой насадки, и особенно смешения жидкой фазы в пустотах между частицами создают обратное смещение, которое может вызвать отклонение от режима полного вытеснения. В таких случаях можно применять дисперсионную модель или модель на основе каскада реакторов. Влияние небольшой дисперсии на работу реактора в сравнении с режимом идеального вытеснения мы уже обсуждали при изучении стерилизаторов.
15. Гидролиз растительного сырья. Преколяция
Производственной основой современной биотехнологии является микробиологическая промышленность, включающая гидролизные производства. Эти производства основаны на реакции гидролитического расщепления гликозидных связей полисахаридов биомассы одревесневшего растительного сырья с образованием в качестве основных продуктов реакции моносахаридов, которые подвергаются дальнейшей биохимической или химической переработке, либо входят в состав товарной продукции.
Гидролиз растительного сырья — наиболее перспективный метод химической переработки древесины, так как в сочетании с биотехнологическими процессами позволяет получать кормовые и пищевые продукты, биологически активные препараты, мономеры и синтетические смолы, топливо для двигателей внутреннего сгорания и разнообразные продукты для технических целей.
Созданию отечественной гидролизной промышленности предшествовали многолетние исследовательские и опытные работы, которые обеспечили необходимые предпосылки для разработки современной технологии гидролиза растительного сырья и получения этанола, кормовых дрожжей, фурфурола, ксилита и других продуктов.
В качестве исходного сырья для получения этих веществ и продуктов используются источники органического углерода — различные углеводы, органические кислоты, а в производстве кормового белка и углеводороды нефти. Потребляемый микроорганизмами связанный азот используется в виде синтетического аммиака или его производных, а необходимый для биохимических процессов фосфор — в виде растворимых в воде солей фосфорной кислоты. В результате ферментативных процессов, протекающих в микроорганизмах, из этих веществ образуются разнообразные белки, нуклеиновые кислоты, жиры и многочисленные биологически активные вещества, к которым относятся витамины, антибиотики, ферменты и др.
Большая часть производств, объединяемых микробиологической промышленностью, основана на использовании в качестве источника углерода различных углеводов, накапливающихся в зеленых растениях. Под действием хлорофилла и света из углекислоты и воды в зеленых частях растений синтезируется сахароза С12Н22О11, из которой в результате сложных биохимических превращений образуется все разнообразие органических соединений, входящих в состав однолетних и многолетних растений.
Часть растений, накапливающих сахарозу в значительных количествах (сахарный тростник, сахарная свекла), используется в промышленности для ее получения. В других растениях сахароза превращается в резервный полисахарид — крахмал, получивший широкое применение как основной источник питания человека и многих животных, а также как сырье в ряде микробиологических процессов. Огромные ресурсы полисахаридов, часть которых ежегодно возобновляется, также являются потенциальным сырьем для ряда производств микробиологической промышленности. Однако перед использованием их в этом направлении полисахариды клеточных стенок должны быть вначале превращены в соответствующие моносахариды путем присоединения к ним элементов воды. Примером такой реакции может быть превращение целлюлозы в глюкозу:
Реакция присоединения воды к полисахаридам с образованием исходных простейших Сахаров носит название гидролиза (от двух греческих слов: хидор — вода и лизис — расторжение). Этот процесс положен в основу гидролизной промышленности, на предприятиях которой полисахариды клеточных стенок растений в результате реакции гидролиза превращаются в смесь моносахаридов: пентоз (С5Н1005) и гексоз (С6Н12О6).
Водный раствор продуктов гидролиза, получивший название гидролизата, после соответствующей очистки и подготовки используется на этих предприятиях в качестве среды для развития различных микроорганизмов. Последние в результате действия системы ферментов превращают, например, гексозиые сахара в этиловый спирт и углекислоту.
Другие рефераты на тему «Производство и технологии»:
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды