Проектирование привода

Для шпонок из чистотянутой стали 45Х принимаем σт = 400 МПа. Принимаем: [s] = 2,3

[σсм] = 400 / 2,3 = 173,9 МПа

Ведущий вал:

lр1 = (2 · 34,43 · 103)/( 38 · (8 – 5) · 173,9) = 3,47 мм

l1 = lр1 + b = 3,47 + 10 = 13,47 мм

Окончательно берем: l1 = 20 мм

Ведомый вал:

lр2 = (2 · 73,65 · 103)/( 25 · (7 – 4) · 173,9) = 11,3 мм

l2 = lр2 + b = 11,3 + 8 = 19,3 мм

Окончательно берем: l2 = 20 мм

lр3 = (2 · 73,65 · 103)/( 45 · (9 – 5,5) · 173,9) = 5,4 мм

l3 = lр3 + b = 5,4 + 14 = 19,4 мм

Окончательно берем: l3 = 20 мм

Ширина колеса 40 мм – шпонка подходит.

5.3 Расчет зубчатой муфты

В приводе будем использовать зубчатую муфту. Выбор муфты производится в зависимости от диаметра вала и передаваемого крутящего момента по критерию:

Трасч = k · Тдл. ≤ Ттабл.

Принимаем k = 1, тогда:

Трасч = Т1 = 34,43 Н·м

Диаметр муфты:

dМ ≥ 10 = 10 = 35 мм

qM = 0,2 – 0,25

kМ = 4 – 6 – при твердости 40-50 HRC

Выбираем зубчатую муфту dМ = 60 мм, Т = 4000 Н · м.

5.4 Разработка чертежа вала редуктора

Основные размеры вала редуктора были получены в результате его проектирования. Недостающие размеры определим на основании выбранного варианта исполнения.

Вал редуктора спроектирован ступенчатым, это дает ряд преимуществ: удобство сборки; изготовление сопрягаемых деталей в системе отверстия.

Размеры под посадочные места под сопрягаемые детали выберем по их соответствующим размерам и условиям соединений.

Для обеспечения возможности выхода шлифовального камня при обработке

посадочных поверхностей вала введем канавку.

Для обеспечения требований взаимозаменяемости и обеспечения необходимого качества соединений проставим на чертеже допуски на размеры.

Укажем шероховатость обрабатываемых поверхностей. В технических требованиях укажем термообработку.

6 Проверочный расчет быстроходного вала

6.1 Определение реакций опор

Для проверочного расчета статической и усталостной прочности ступенчатого вала составим его расчетную схему.

Расчетная схема вала.

Геометрические параметры вала определим на основании чертежа:

а = 75 мм; b = 42 мм; с = 42 мм.

Рассмотрим внешние силы, нагружающие быстроходный вал редуктора.

Со стороны муфты от электродвигателя на вал действует крутящий момент Т1 и поперечная сила Fr; со стороны зацепления окружная сила FT и поперечная R0:

FT = 2T1 / d1 = 2 · 34,43 · 103 / 62 = 1111 Н

R0 = FT · tgα = 1111 · tg 20° = 404 Н

Fr = (0,1 – 0,3)Ft ,

где Ft – окружное усилие, действующее на зубья муфты.

Ft = 2T1 / dМ = 2 · 34,43 · 103 / 60 = 1148 Н

Принимаем Fr = 344,4 Н

Рассмотрим плоскость YOZ:

ΣМАу = 0; -RBy · (c+b) – R0 · b + Fr · a = 0

RBy = (Fr · a – R0 · b) / (c+b) = (344,4 · 75 – 404 · 42) / 84 = 105,6 H

ΣМBу = 0; RAy · (c+b) + R0 · c + Fr · (a + b + c) = 0

RAy = (-Fr · (a + b + c) – R0 · c) / (c+b) = (-344,4 · 159 – 404 · 42) / 84 = - 854 H

Проверка:

ΣFу = 0; -Fr - RAy – R0 - RBy = -344,4 + 854 – 404 – 105,6 = 0

Построение эпюры Му:

Участок 0 ≤ z ≤ a, a = 0,075 м.

Му = - Fr · z

Му(0) = 0

Му(0,075) = -344,4 · 0,075 = -25,8 Н · м

Участок a ≤ z ≤ a + b, a = 0,075 м, b = 0,042 м.

Му = - Fr · z - RAy · (z – a)

Му(0,075) = - Fr · z = -344,4 · 0,075 = -25,8 Н · м

Му(0,117) = -344,4 · 0,117 – (- 854) · (0,117 – 0,075) = -4,4 Н · м

Плоскость XOZ.

ΣМАх = 0; -FT · b – RBx (c + b) =0

RBx = - FT · b / (c + b) = -1148 · 42 / 84 = -574 Н

ΣМВх = 0; FT · с + RАx (c + b) =0

RАx = - FT · с / (c + b) = -1148 · 42 / 84 = -574 Н

Проверка:

ΣFx = 0; RАx + RBx + FT = 0

-574 – 574 + 1148 = 0

Построение эпюры Мх.

Участок 0 ≤ z ≤ a, a = 0,075 м.

Мх(0) = 0

Мх(0,075) = 0 – на этом участке нет изгибающих сил.

Участок a ≤ z ≤ a + b, a = 0,075 м, b = 0,042 м.

Мх(0,075) = 0

Мх(0,117) = RАx · b = 574 · 0,042 = 24,1 Н · м

Результирующие реакции опор.

RA = = = 1029 H

RB = = = 583,6 H

Построение эпюры Мz.

T1 = 34,43 Н · м

Участок 0 ≤ z ≤ a + b

Mz = - T1 = -34,43 Н · м

6.2 Расчет статической прочности вала

На основании эпюр можно сделать следующие выводы.

Опасными сечениями для рассматриваемого вала, которые необходимо проверить на прочность, являются сечения: (z = 0), как наименее жесткое при кручении dВ1 = 38 мм, а также сечения (z = a) и (z = a + b), где действуют наибольшие изгибающие моменты.

В сечении (z = 0) находится еще и шпоночный паз, ослабляющий его жесткость. Сечение (z = a), где действует изгибающий момент:

Ма = = = 25,8 Н·м

И крутящий момент Мz = 34,43 Н·м, находится в сложном напряженном состоянии и при этом имеет диаметр, незначительно превышающий наименьший. В сечении (z = a + b) изгибающий момент достигает величины:

Ма + b = = = 24,5 Н·м

Рассчитаем наибольшие напряжения в опасных сечениях.

В сечении (z = 0) нормальные напряжения от осевых сил и изгибающих моментов равны нулю, касательные напряжения τmax определяются крутящим моментом

Мz = 34,43 Н·м и полярным моментом сопротивления сечения Wp цилиндрического конца вала со шпоночным пазом, глубиной t1 = 5 мм.

Wp = - = - = 10052 мм3

Тогда наибольшие касательные напряжения:

τmax = Мz / Wp = 34,43 / 10052 · 10-9 = 3,4 МПа,

а условие прочности вала в сечении (z = 0):

τmax = 3,4 МПа ≤ [τ]k = 44 МПа

выполняется.

В сечении (z = a) наибольшие нормальные напряжения определяются величиной изгибающего момента Ма = 25,8 Н·м и моментом сопротивления сечения вала.

Wa = = = 12266 мм3

σmax = Ма / Wa = 25,8 / 12266 · 10-9 = 2,1 МПа,

а наибольшие касательные напряжения этого сечения с полярным моментом:

Страница:  1  2  3  4 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы