Статистико–экономический анализ социальной защищенности населения в Калужской области (на примере Сухиничиского района)

В результате решений уравнения на ЭВМ были получены следующие его параметры:

Y=-15065,72+0,40*X1+7,76*X2

Интеграция полученных параметров следует:

A0=-15065,72 - условное начало содержательной интерпретации не подлежит;

A1=0,40 – коэффициент чистой регрессии при первом факторе свидетельствует о том, что при изменении среднемесячная номинально начисленная з/п работникам в экономи

ке, руб. на 1руб. объем платных услуг на душу населения, руб. в среднем изменится на 0,40 руб. при условии, что другие факторы остаются постоянными;

A2=7,76 - коэффициент чистой регрессии при втором факторе показывает, что при изменении среднего размера начисленной за месяц пенсий пенсионерам стоящих на учете в органах соцзащиты, руб. на 1руб. вызывает изменение объема платных услуг на душу населения, руб. на 7,76 руб. при условии, что другие факторы остается постоянными.

Для сравнения коэффициентов регрессии выразим их в виде β - коэффициентах и коэффициентов эластичности.

β – коэффициенты показывают, что если величина фактора изменяется на одно среднеквадратическое отклонение, результативный признак увеличится (уменьшится) на величину β – коэффициента своего квадратического отклонения, при постоянстве остальных факторов.

Коэффициенты эластичности показывают, что если величина факторного признака увеличится на 1%, результативный признак увеличится (уменьшится) соответственно на коэффициент эластичности, выраженный в % при постоянстве других факторов.

Рассчитаем среднее значение признака и определим среднеквадратическое отклонение.

ỹ=∑y/n (2.1)

где, ỹ - среднее значение результативного признака;

∑y - сумма результативного признака по всем районам;

n - число районов (24).

ỹ=1762,375

X1=∑ X1 // n (2.2)

где, X1 - среднее значение первого факторного признака

∑ X1 - сумма первого факторного признака по всем районам;

n - число районов (24).

X1=4224,92

X2=∑ X2/n, где

X2 - среднее значение второго факторного признака

∑ X2 - сумма второго факторного признака по всем районам;

n - число районов (24).

X2=1942,14

бy=(∑(yi-y) 2/n) 1/2; бy=4916,73 (2.3)

бх1=(∑(xi1-x1) 2/n) 1/2; бх1=1095 (2.4)

бх2=(∑(xi2-x1) 2/n) 1/2; бх2=59,46 (2.5)

Теперь можно определить β - коэффициенты и коэффициенты эластичности.

β1=0,40* бх1/ бy; β1=0,40*1095/4916,73=0,089 (2.6)

β2=7,76* бх2/ бy; β2=7,76*59,46/4916,73=0,094 (2.7)

Сопоставление β – коэффициентов показывает, что наиболее сильное влияние на варьирование результативного фактора оказывает среднемесячная номинально начисленная з/п работникам экономики, а менее сильное воздействие оказывает средний размер пенсий пенсионерам состоящих на учете в органах соцзащиты.

Э1=а1* X1/ ỹ; Э1=0,40*4224,9/1762,375=0,959 (2.8)

Э2=а1* X2/ ỹ; Э2=7,76*1942/1762,375=8,551 (2.9)

Первый коэффициент эластичности показывает, что при изменении среднемесячной номинально начисленной з/п на 1% средний размер вклада в сбербанк изменится на 0,959 руб. . Второй коэффициент эластичности показывает, что при среднем размере начисленной за месяц пенсий на 1% средний размер вклада изменится на 8,551 руб.

Таким образом, из анализа видно, что больше всего на средний размер вклада в сбербанк влияет среднемесячная номинально начисленная з/п работникам экономики. Меньше всего на средний размер вклада в сбербанк влияет средний размер начисленной за месяц пенсий.

Коэффициент множественной корреляции равен 0,69, он говорит о том, что связь сильная (приложение №2). Также был рассчитан коэффициент детерминации, который является квадратом коэффициент корреляции. Он показывает, насколько тесной является связь между выбранными показателями. В нашем случае он равен 0,481, т.е. связь между признаками средняя.

Проверка значимости коэффициента множественной корреляции показала, что Fрасч= 9,73, при значимости Fтабл. =3,10 при пятипроцентном уровне. Таким образом, Fрасч> Fтабл, что позволяет с вероятностью 95% утверждать существенность различий в величине дисперсий и соответственно сделать вывод об адекватности модели.

В качестве критериев проверки гипотез относительно двух средних используется критерий t - Стьюдента. Фактическое значение t=1,55, а табличное t=2,08, необходимо признать справедливость альтернативной гипотезы.

Полученные коэффициенты корреляции показывают, что связь между объемом платных услуг на душу населения, руб. и средней номинально начисленной з/п работникам в экономики, руб. более сильная (0,574), чем со средним размером начисленной за месяц пенсий пенсионерам, руб. (0,573).

Глава 3. Анализ динамических рядов

3.1 Природно-экономическая характеристика Сухиничиского района

Сухинический район, один из центральных районов Калужской области. В центре района пересекаются железная дорога и автомобильная магистраль. Развитие поселка связано со строительством Московско-Киевской железной дорогой. Шоссейная дорога Москва-Киев связывает Сухиничи с Калугой и Москвой. Район в целом расположен в пределах Мещовского ополья. Здесь господствуют ландшафты морено-эрозионных равнин со светло-серыми лесными почвами. На севере района небольшую площадь занимает ландшафты озерно-ледниковых равнин со светло-серыми лесными, нередко тяжело-суглинистыми почвами, на юге - ландшафты эрозионных равнин со светло-серыми лесными почвами, местами серыми лесными почвами. Лесистость района около 23.9%. В районе имеется месторождение строительных и силикатных песков, территории занимающие с/х угодия, имеют общую площадью 99402 га.

Специализация района молочно-мясное животноводство и растениеводство.

Выращивание зерновых, картофеля, в последние 5 лет возобновлены посевы проса. Показатели развития близки к средне-областным. На 1996 год в районе было 13 с/х предприятий, около 150 фермерских хозяйства (1998 год), 8500 личных подсобных хозяйства (2000 год), соответственно, на 2004 год – 14, более 100. В общественных и фермерских хозяйствах 5356 голов КРС, в том числе 2816 коров, у населения 1290 голов КРС, 1885 свиней.

Стоимость основных производственных фондов с/х назначения 325 млн. руб., энергооворуженность-52 л. с. на 1 работника, энергообеспеченность 141 л. с. на 100 га пашни. По площади земель, отведенной фермерским хозяйствам, район занимает второе место после Износковского района. В районе есть также 68 коллективных садов.

Районный центр соединен со всеми усадьбами колхозов и совхозов. Дороги территориального значения, пос. Газопровод.

3.2 Анализ рядов динамики

Важной задачей статистики является изучение явления во времени. Для решения этой задачи необходимо иметь данные по определенному кругу показателей на ряд моментов времени, следующих друг за другом.

Ряд расположенных в хронологической последовательности статистических показателей динамический ряд. Статистические показатели, характеризующие изучаемое явление называют уровнями ряда. Динамический ряд представляет собой последовательность уровней, сопоставляя которые между собой можно характеристику скорости и интенсивности развития явления. В результате сравнения уровней получается система относительных и абсолютных показателей динамики: абсолютный прирост, коэффициент роста, темп прироста, абсолютное значение одного процента прироста.

Страница:  1  2  3  4  5  6  7  8  9  10 


Другие рефераты на тему «Социология и обществознание»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы