Статистический анализ и прогнозирование безработицы
Оценим параметры уравнения на типичность. Найдем S2- остаточная уточнённая дисперсия; mа, mв, mr - ошибки по параметрам. Получим следующие данные:
S2=6,29; mа=0,671; mв=0,028; mr=0,173
ta=3,669; tb=126,61; tс=-7,32; tr=4,636.
Сравним полученное значение с табличным t-критерием Стьюдента. tтабличное при Р=0,05 и (n-2)= 2,1788. Так как tрасчётное > tтабличное , то параметры а, b и r уравнения типичны (значимы). Так как tрасчётное < tтабличное , то параметр с незначим.
Оценим уравнение в целом по критерию Фишера, выдвигаем гипотезу Н0:о том, что коэффициент регрессии равен нулю.
Fф=Dфакт/Dост=348,89/6,29=55,47.
FT(v1=1;v2=12)=4,75.
Т.к. Fф > FT при 5%-ном уровне значимости гипотеза Н0 отвергается, уравнение в целом стат. значимо. Индекс детерминации здесь составляет 0,642. Следовательно, уравнением регрессии объясняется 64,2% дисперсии результативного признака, а на долю прочих факторов приходится 35,8% её дисперсии (т.е. остаточная дисперсия).
3.6. Многофакторный корреляционно - регрессионный анализ
Таблица 4. Исходные данные.
год |
уровень безраб-цы |
доход на душу насел-я |
индекс потребит цен |
индекс ВРП |
1995 |
12,7 |
83,7 |
278,2 |
86,2 |
1996 |
14,9 |
89,6 |
235,2 |
93,5 |
1997 |
21,3 |
130,5 |
124 |
102,2 |
1998 |
22,2 |
72,2 |
107,9 |
94,2 |
1999 |
17,3 |
99,9 |
163,7 |
108 |
2000 |
19,1 |
111,2 |
144,6 |
104,9 |
2001 |
18,4 |
110,2 |
120,3 |
106,4 |
2002 |
15,4 |
121,5 |
110,6 |
106,4 |
2003 |
16,8 |
104,5 |
114,2 |
106,7 |
2004 |
15,3 |
104,4 |
114,7 |
103,7 |
2005 |
12 |
111,3 |
115,1 |
104,8 |
итого |
185,4 |
1139 |
1628,5 |
1117 |
средн |
16,86 |
103,55 |
148,046 |
101,55 |
Для анализа необходимо из нескольких факторов произвести предварительный отбор факторов для регрессионной модели. Сделаем это по итогам расчета коэффициента корреляции, т.е. возьмем те факторы, связь которых с результативным признаком будет выражена в большей степени. Рассмотрим следующие факторы:
- Доход на душу населения – x1 (%)
- Индекс потребительских цен – x2 (%)
- Индекс ВРП - x3 (%)
Рассчитаем коэффициент корреляции для линейной связи и для имеющихся факторов - x1, x2 и x3:
Для фактора x1 получаем коэффициент корреляции: r1= 0,042
Для фактора x2 получаем коэффициент корреляции: r2 =0,437
Для фактора x3 получаем коэффициент корреляции: r3=0,151
По полученным данным можно сделать вывод о том, что:
1)Связь между x1 и y отсутствует, так как коэффициент корреляции меньше 0,15. Таким образом, возникает необходимость исключить данный фактор из дальнейших исследований.
2)Связь между x2 и y прямая (так как коэффициент корреляции положительный) и умеренная, так как она находится между 0,41 и 0,50. Поэтому, будем использовать фактор в дальнейших расчётах.
3)Связь между x3 и y прямая (так как коэффициент корреляции положительный) и слабая. Тем не менее, будем использовать фактор в дальнейших расчетах.
Таким образом, два наиболее влиятельных фактора – Индекс потребительских цен – x2 и индекс ВРП - x3. Для имеющихся факторов x2 и x3 составим уравнение множественной регрессии.
Проверим факторы на мультиколлинеарность, для чего рассчитаем коэффициент корреляции rx2x3. Подставив имеющиеся данные (из таблицы 10) в формулу, имеем следующее значение: rx2x3=0,747. Полученный коэффициент говорит об очень высокой связи, поэтому дальнейший анализ по обоим факторам вестись не может. Однако в учебных целях продолжим анализ.
Другие рефераты на тему «Социология и обществознание»:
Поиск рефератов
Последние рефераты раздела
- Стратегии сотрудничества государства и общественного сектора в сфере предоставления социальных услуг
- Навыки общения с клиентом
- Мусульманская община в Северной Европе
- Моральная оценка личности
- Организация, формы и методы социальной работы с пожилыми людьми в условиях сельской местности
- Наркомания среди подростков и молодёжи как социальная проблема
- Организация социальной работы с детьми с ограниченными возможностями здоровья