Усилитель постоянного тока

Содержание

Введение

Анализ технического задания

Расчет усилителя постоянного тока

Моделирование работы усилителя

Выводы

Список использованных источников

Приложения

Введение

Несмотря на все более расширяющееся использование машинных методов схемотехнического проектирования современной электронной аппаратуры, в повседневной практике разработчикам

электронных схем приходится вначале решать задачи приближенного расчета типовых узлов и устройств, а затем уточнять результаты расчета на ЭВМ или экспериментальным путем.

В данном курсовом проекте расчет усилителя постоянного тока также в начале будет производится без применения программного обеспечения, а затем схема моделируется на ЭВМ с целью проверки принятых решений и уточнения полученных результатов.

Таким образом, целью данного курсового проектирования является приобретение практических навыков конструирования электронных схем и опыта моделирования электронных схем на ЭВМ на примере разработки схемы усилителя постоянного тока с заданными в техническом задании параметрами.

Анализ технического задания

Напряжение на входе в режиме покоя Uвх=0 В; максимальное изменение напряжения входного сигнала ±ΔUвх=50 мВ; внутреннее сопротивление источника входного сигнала Ri=1000 Ом; выходная мощность Рвых=5 Вт; сопротивление нагрузки Rн=100 Ом; напряжение источника питания Uпит=±15 В.

Усилители постоянного тока предназначены для усиления сигналов, медленно меняющихся во времени, спектр которых содержит гармонические составляющие с частотой в плоть до ω = 0.

В данном курсовом проекте для уменьшения дрейфа в усилителе постоянного тока применил балансную (дифференциальную) схему. Наибольшее распространение получила схема параллельного баланса, представлена на рисунке приложения В, называемая также дифференциальным усилителем. Дифференциальный усилитель обеспечивает высокое усиление дифференциального входного сигнала Uвх. д, приложенного между входами каскада, и практически не усиливает синфазный сигнал, одинаковый на обоих входах.

Расчет усилителя постоянного тока

В результате расчета требуется определить режим работы каскада и данные элементов схемы.

Порядок расчета УПТ:

1. Выбираем тип транзистора. Критерием выбора для работы в схемах УПТ является минимальное значение обратного тока коллектора , а также выполняется условие:

, (2.1)

где

- справочное данное транзистора;

- заданная величина, 15 В.

Из [4] был выбран транзистор типа МП-114, у которого мкА и выполняется условие (2.1):

2. Находим коэффициент усиления каскада по напряжению:

, (2.2), где (2.3)

, , - данные технического задания

(В)

3. В семействе выходных характеристик выбранного транзистора, представленные на рисунке 1.1 приложения А, выбираем рабочую точку Р. Для этого принимаем в режиме покоя:

; , (2.4)

где

- справочное значение максимально допустимого максимального тока коллектора для выбранного транзистора.

(В)

(мА)

Теперь, когда мы имеем и , на семействе выходных ВАХ (приложение А), выбираем рабочую Р точку и находим графически величину тока базы мА. После, зная ток базы, переходим на семейство входных ВАХ, при , в данном случае В, выбираем рабочую точку Р' и находим В.

4. Проверяем правильность выбора рабочей точки. Мощность, рассеиваемая на коллекторе транзистора в режиме покоя , не должна превышать максимально допустимой постоянной рассеиваемой мощности выбранного транзистора:

, (2.5)

где

- данные технического задания.

5. Одним из возможных методов расчета транзисторных УПТ является расчет с помощью - параметров транзистора , , и , каждый из которых имеет размерность проводимости. Так как в справочнике не были даны - параметры транзистора, поэтому - параметры будем рассчитывать графически, с помощью семейств входных и выходных ВАХ, при этом надо

учитывать соотношения:

при ; при ; (2.6)

при ; при .

Страница:  1  2  3 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы