Проблемы современной физики

На этом пути за последние годы удалось решить очень важную практическую задачу – создать электронный микроскоп. Оптический микроскоп дал человеку громадной важности результат. Достаточно напомнить, что все учение о микробах и о болезнях, ими вызываемых, все методы их лечения построены на тех фактах, которые удается наблюдать в микроскопе. За последние годы появился ряд оснований думать, что мик

робами не ограничивается органический мир, что имеются какие-то живые образования, размеры которых гораздо меньше, чем микробы. И вот тут-то мы и натолкнулись, казалось бы, па непреодолимое препятствие.

Микроскоп пользуется световыми волнами. При помощи же световых волн, какой бы системой линз мы не пользовались, нельзя изучать объекты, во много раз меньшие световой волны.

Длина волны света – величина очень небольшая, измеряемая десятыми долями микрона. Микрон – это тысячная доля миллиметра. Значит, величины в 0.0002 – 0.0003 мм в хороший микроскоп можно видеть, но еще более мелкие уже видеть нельзя. Микроскоп здесь бесполезен и но только потому, что мы не умеем изготовлять хороших микроскопов, а потому, что такова природа света.

Какой лее тут выход? Нужен свет с меньшей длиной волны. Чем меньше длина волны, тем более мелкие предметы мы можем рассматривать. Целый ряд оснований заставлял думать, что существуют мелкие организмы, недоступные микроскопу и тем не менее имеющие большое значение в растительном и животном мире, вызывающие ряд болезней. Это так называемые вирусы, фильтрующиеся и нефильтрующиеся. Световыми волнами их но удавалось обнаружить.

Потоки электронов напоминают собой световые волны. Их точно так же можно концентрировать, как световые лучи, и создавать полное подобие оптики. Ее называют электронной оптикой. В частности, можно осуществить и электронный микроскоп, т.е. такой же прибор, который будет создавать при помощи электронов сильно увеличенное изображение мелких предметов. Роль стекол будут выполнять электрические и магнитные ноля, которые действуют на движение электронов, как линза на световые лучи. Но длина электронных волн в 100 раз меньше, чем световых, и, следовательно, с помощью электронного микроскопа можно видеть тела, в 100 раз меньшие, не в 10-тысячную долю миллиметра, а в миллионную долю миллиметра, а миллионная доля миллиметра – это уже размер больших молекул.

Второе отличие состоит в том, что свет мы видим глазом, а электрон видеть нельзя. Но это не такой большой дефект. Если электроны мы не видим, то места, на которые они попадают, можно видеть хорошо. Они вызывают свечение экрана или почернение фотографической пластинки, и мы можем изучать фотографию предмета. Электронный микроскоп был построен, и мы получили микроскоп с увеличением уже не в 2000–3000, а в 150–200 тысяч раз, отмечающий предметы в 100 раз меньше тех, которые доступны оптическому микроскопу. Вирусы из гипотезы сразу превратились в факт. Можно изучать их поведение. Можно видеть даже очертание сложных молекул. Таким образом, мы получили новое мощное орудие исследования природы.

Известно, как громадна была роль микроскопа в биологии, в химии, в медицине. Появление нового орудия, возможно, вызовет еще более значительный шаг вперед и откроет перед нами новые, неведомые ранее области. Что будет открыто в этом мире миллионных долей миллиметра, предсказать трудно, но можно думать, что это – новый этап естествознания, электротехники и многих других областей знания.

Как видите, от вопросов волновой теории материи с ее странными, непривычными положениями мы быстро перешли к реальным и практически важным результатам.

Электронная оптика используется не только для создания микроскопа нового типа. Значение ее растет чрезвычайно быстро. Однако я ограничусь только рассмотрением примера ее применения.

Так как я говорю о наиболее современных проблемах физики, я не буду излагать теорию атома, которая была завершена в 1930 г.: это, скорее, проблема вчерашнего дня.

Нас интересует сейчас, как атомы соединяются, образуя физические тела, которые можно взвесить на весах, можно ощутить их теплоту, размеры или твердость и с которыми мы имеем дело в жизни, в технике р т.д.

Каким же образом свойства атомов проявляются в твердых телах? Прежде всего, оказывается, что квантовые законы, которые были обнаружены в отдельных атомах, сохраняют полную свою применимость и к целым телам. Как в отдельных атомах, так и в целом теле электроны занимают только вполне определенные положения, обладают только некоторыми, вполне определенными энергиями.

Электрон в атоме может находиться только в определенном состоянии движения, и, более того, в каждом таком состоянии может быть только один электрон. Не может быть в атоме двух электронов, которые находятся в одинаковых состояниях. Это тоже одно из основных положений теории атома.

Так вот, когда атомы соединяются в громадных количествах, образуя твердое тело – кристалл, то и в таких больших телах не может быть двух электронов, которые занимали бы одно и то же состояние.

Если число состояний, доступных электронам, как раз равно числу электронов, тогда каждое состояние занято одним электроном и свободных состояний не остается. В таком теле электроны оказываются связанными. Для того чтобы они начали двигаться в определенную сторону, создавая поток электричества, или электрический ток, чтобы, другими словами, тело проводило электрический ток, необходимо, чтобы электроны изменили свое состояние. Раньше они двигались вправо, а теперь должны двигаться, например, влево; под действием электрических сил должна возрасти энергия. Следовательно, состояние движения электрона должно измениться, а для этою нужно перейти в друюе состояние, отличное от прежнего, но это невозможно, так как все состояния уже заняты. Такие тела никаких электрических свойств не проявляют. Это – изоляторы, в которых не может быть тока несмотря на то, что имеется колоссальное количество электронов.

Возьмите другой случай. Число свободных мест гораздо больше, чем число электронов, там находящихся. Тогда электроны свободны. Электроны в таком теле, хотя их и не больше, чем в изоляторе, могут менять свои состояния, свободно двигаться вправо или влево, увеличивать или уменьшать свою энергию и т.д. Такие тела – металлы.

Таким образом, мы получаем очень простое определение того, какие тела проводят электрический ток, какие являются изоляторами. Это различие охватывает все физические и физико-химические свойства твердого тела.

В металле энергия свободных электронов преобладает над тепловой энергией его атомов. Электроны стремятся перейти в состояние с наименьшей возможной энергией. Этим и определяются все свойства металла.

Образование химических соединений, например водяного пара из водорода и кислорода, происходит в строго определенных соотношениях, определяемых валентностью, – один атом кислорода соединяется с двумя атомами водорода, две валентности атома кислорода насыщаются двумя валентностями двух атомов водорода.

Но в металле дело обстоит по-другому. Сплавы двух металлов образуют соединения не тогда, когда количества их находятся в отношении их валентностей, а тогда, например, когда отношение числа электронов в данном металле к числу атомов в этом металле равно 21:13. Ничего похожего на валентность в этих соединениях нет; соединения образуются тогда, когда электроны получают наименьшую энергию, так что химические соединения в металлах в гораздо большей степени определяются состоянием электронов, чем силами валентности атомов. Совершенно так же состояние электронов определяет все упругие свойства, прочность и оптику металла.

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы