Принципы работы трансформаторов
Фазоинвертирующие и согласующие трансформаторы в выходном каскаде усилителя звуковой частоты с транзисторами одного типа проводимости. Транзистор в такой схеме усиливает только половин
у периода выходного сигнала. Чтобы усилить оба полупериода, нужно подать сигнал на два транзистора в противофазе. Это и обеспечивает трансформатор T1. Трансформатор T2 суммирует выходные импульсы VT1 и VT2 в противофазе и согласует выходной каскад с низкоомным динамиком
7. Теория трансформаторов
7.1 Уравнения линейного трансформатора
Пусть i1, i2 — мгновенные значения тока в первичной и вторичной обмотке соответственно, u1 — мгновенное напряжение на первичной обмотке, RH — сопротивление нагрузки. Тогда
Здесь L1, R1— индуктивность и активное сопротивление первичной обмотки, L2, R2— то же самое для вторичной обмотки, L12— взаимная индуктивность обмоток. Если магнитный поток первичной обмотки полностью пронизывает вторичную, то есть если отсутствует поле рассеяния, то
.
Индуктивности обмоток в первом приближении пропорциональны квадрату количества витков в них.
Мы получили систему линейных дифференциальных уравнений для токов в обмотках. Можно преобразовать эти дифференциальные уравнения в обычные алгебраические, если воспользоваться методом комплексных амплитуд.
Для этого рассмотрим отклик системы на синусоидальный сигнал
u1=U1 e-jω t
(ω=2π f, где f — частота сигнала, j — мнимая единица).
Тогда i1=I1 e-jω t и т. д., сокращая экспоненциальные множители получим
U1=-jωL1 I1 -jωL12 I2+I1 R1
-jωL2 I2 -jω L12 I1+I2 R2 =-I2 Zн
Метод комплексных амплитуд позволяет исследовать не только чисто активную, но и произвольную нагрузку, при этом достаточно заменить сопротивление нагрузки Rн её импедансом Zн. Из полученных линейных уравнений можно легко выразить ток через нагрузку, воспользовавшись законом Ома— напряжение на нагрузке, и т. п.
7.2 Т-образная схема замещения трансформатора
На рисунке показана эквивалентная схема трансформатора с подключенной нагрузкой, как он видится со стороны первичной обмотки.
Здесь T — коэффициент трансформации, L12 — «полезная» индуктивность первичной обмотки, L1п, L2п — паразитные индуктивности первичной и вторичной обмотки (связанные с рассеянием),R1п, R2п — паразитные сопротивления первичной и вторичной обмотки соответственно, Zн — импеданс нагрузки.
7.3 Потери в трансформаторах
Степень потерь (и снижения КПД) в трансформаторе зависит, главным образом, от качества, конструкции и материала «трансформаторного железа» (электротехническая сталь). Потери в стали состоят в основном из потерь на нагрев сердечника, на гистерезис и вихревые токи. Потери в трансформаторе, где «железо» монолитное значительно больше, чем в трансформаторе, где оно составлено из многих секций (так как в этом случае уменьшается количество вихревых токов). На практике монолитные сердечники не применяются. Для снижения потерь в магнитопроводе трансформатора, также, магнитопровод изготавливается из специальных сортов трансформаторной стали с добавлением кремния, который повышает удельное сопротивление железа электрическому току, а сами пластины лакируются для изоляции друг от друга. Кроме того потери в трансформаторе добавляются за счёт нагрева проводов. Это учитывается в схеме замещения реального трансформатора при помощи активного сопротивления.
7.4 Режимы работы трансформатора
1. Режим холостого хода. Данный режим характеризуется разомкнутой вторичной цепью трансформатора, вследствие чего ток в ней не течёт. С помощью опыта холостого хода можно определить КПД трансформатора, коэффициент трансформации, а также потери в стали.
2. Нагрузочный режим. Этот режим характеризуется замкнутой на нагрузке вторичной цепи трансформатора. Данный режим является основным рабочим для трансформатора.
3. Режим короткого замыкания. Этот режим получается в результате замыкания вторичной цепи накоротко. С его помощью можно определить потери полезной мощности на нагрев проводов в цепи трансформатора.
7.5 Габаритная мощность
Габаритная мощность трансформатора описывается следующей формулой:
Pгаб=(P1 + P2)/2=(U1I1 + U2I2)/2
1 — первичной обмотки
2 — вторичной обмотки
Однако, это конечный результат. Или академическое определение. Изначально габаритная мощность, как следует из названия, определяется габаритами сердечника и материалом, его магнитными и частотными свойствами.
7.6 КПД трансформатора
КПД трансформатора нах Габаритная мощность трансформатора описывается следующей формулой:
Pгаб=(P1 + P2)/2=(U1I1 + U2I2)/2
1 — первичной обмотки
2 — вторичной обмотки
Однако, это конечный результат. Или академическое определение. Изначально габаритная мощность, как следует из названия, определяется габаритами сердечника и материалом, его магнитными и частотными свойствами.
И находится по следующей формуле:
где
P0 — потери холостого хода (кВт) при номинальном напряжении
PL — нагрузочные потери (кВт) при номинальном токе
P2 — активная мощность (кВт), подаваемая на нагрузку
n — относительная степень нагружения (при номинальном токе n=1).
8.Эксплуатация
8.1 Срок службы
Срок службы трансформатора может быть разделен на две категории:
Экономический срок службы — экономический срок службы заканчивается, когда капитализированная стоимость непрерывной работы существующего трансформатора превысит капитализированную стоимость нового капиталовложения. На практике это обычно означает что стоимость общих потерь старого трансформатора становится слишком высокой. Увеличивается доля косвенных рисков и убытков, связанных со временем простоя электрооборудования.
Технический срок службы
8.2 Работа в параллельном режиме
Параллельная работа трансформаторов нужна по очень простой причине. При малой нагрузке мощный трансформатор имеет большие потери холостого хода, поэтому вместо него подключают несколько трансформаторов меньшей мощности, которые отключаются, если в них нет необходимости.
При параллельном подключении двух и более трансформаторов требуется следующее:
Другие рефераты на тему «Физика и энергетика»:
- Автоматизация теплового пункта гражданского здания
- Специальная и общая теория относительности Эйнштейна
- К вопросу о Единой теории полей и взаимодействий
- Электроснабжение предприятия по производству деталей к автомобилям
- Моделирование процессов тепло- и массопереноса при закачке радиоактивных растворов в глубокозалегающие пласты
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода