Определение моментов инерции тел методом трифилярного подвеса

Введение

Цель работы: определить момент инерции тела относительно оси, проходящей через центр его масс, экспериментально проверить аддитивность момента инерции и теорему Штейнера.

Приборы и принадлежности: трифилярный подвес, секундомер, штангенциркуль, линейка набор тел.

Элементы теории

Момент инерции тела является мерой его ин

ерции при вращательном движении и зависит не только от массы данного тела, но и от распределения данной массы относительно оси вращения.

Момент инерции материальной тачки (I) относительно некоторой оси равен:

1) I = mr2,

2) где m – масса материальной точки; r – расстояние от точки до оси вращения.

В силу аддитивности момента инерции можно записать выражение:

3) ,

где Ik – момент инерции k-ой части вращающейся системы; N – число частей во вращающейся системе.

Для протяженных тел момент инерции определяется, как сумма моментов инерции отдельных элементарных объёмов (dV), на которые можно разбить данное тело и которые можно считать материальными точками:

4) ,

где dm = rdV – масса элементарного объёма; r - плотность тела в данной точке. Для однородных тел, у которых r - const:

5) .

Так, момент инерции однородного круглого пустотелого цилиндра или диска массой m с внутренним радиусом R2 относительно оси, совпадающей сего геометрической осью, рассчитанный с помощью формулы (4), равен:

6) .

Тогда:

- для сплошного цилиндра, у которого R1 = 0, R2 = R.

7) ;

- для тонкого кольца, у которого R1 = R2 = R

8) I = mR2.

Согласно определению момента инерции одно и то же тело относительно разных осей обладает различными моментами инерции, которые могут быть найдены по теореме Штейнера:

8) I = I0 + ma2,

где I0 –момент инерции тела относительно оси, проходящей через центр масс тела; I – момент инерции того же тела относительно оси, параллельной предыдущей и смещённой на расстояние a от неё; m – масса тела.

В данной работе требуется определить момент инерции ненагруженной платформы и платформы с исследуемыми телами, что позволяет найти момент инерции самих тел и провести проверку аддитивности момента инерции, а так же убедиться в справедливости теоремы Штейнера. Для этого в ней используется метод трифилярного подвеса.

После однократного выведения данной системы (подвеса или подвеса с грузом) из положения устойчивого равновесия, поворотом на некоторый угол a, система начинает совершать произвольные колебания, период которых зависит момента инерции системы, а следовательно и от её массы. Таким образом полную механическую энергию данной системы (E) в произвольный момент времени t (и пренебрегая трением) можно записать так:

9) ,

где J – момент инерции системы, состоящей из платформы и установленного на ней исследуемого твёрдого тела; w = da / dt – угловая скорость системы при повороте её на угол a; M – масса системы (платформы с грузом или без оного). В формуле (9) - кинетическая энергия вращательного движения системы, - потенциальная энергия системы. При (z – z0) – есть небольшая высота, на которую приподнимается система при вращении в силу перекоса нитей на которых смонтирован трифилярный подвес (z0 – высота покоящейся платформы; z – высота платформы, совершающей крутильные колебания, в произвольный момент времени).

В предоставленном после этого самому себе устройстве начнут совершаться крутильные колебания, период которых зависит от момента инерции подвешенной системы. Момент инерции, а следовательно, и период колебаний будут меняться, если платформу нагружать какими-либо телами.

Координаты точки А1 верхнего диска в системе координат, указанной на рисунке, равны: х1=r; y1 = 0; z1 = 0. Координаты же точки А крепления нижней платформы к нити подвеса в момент времени, когда платформа повернулась на малый угол a, равны, соответственно,

10) x = R×cos(a); у = R×sin(a); z = z.

Расстояние между точками А и А1 равно длине нити подвеса (l), и поскольку при колебаниях платформы длина нитей не меняется, то в любой момент времени справедливо соотношение:

11) .

С учетом указанных выше координат точек А и А1 на основании (11) можно написать для произвольного значения угла а поворота следующее выражение:

12) .

Если a = 0, то

13) .

Здесь x = R; у = 0; z = z0 - координаты точки А нижней платформы в момент времени, когда a = 0. Приравнивая выражения (12) и (13) и раскрывая скобки, получаем:

14)

Так как угол a мал, то для него можно использовать следующие соотношения:

15) sin(a) » a;

16)

Используя их, из (14) для малых углов a получаем:

17) .

Учитывая соотношение (14), получаем:

18) ;

или

19) .

Подставив в (9) найденное значение (z0-z), имеем

20) ;

или

21) .

Дифференцируя выражение (21) по времени и учитывая, что полная энергия системы Е с течением времени не меняется, получаем:

22) .

Из последнего выражения следует:

23) .

Обозначив

24) ,

получим

25) .

Это дифференциальное уравнение гармонического осциллятора. Решение уравнения (25) можно записать в виде:

26) ,

где a0 - амплитуда колебания; w0 - циклическая частота колебаний.

Период колебаний равен:

27) .

Решив последнее уравнение относительно J, получим расчетную формулу:

28) .

Страница:  1  2 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы