Определение моментов инерции тел методом трифилярного подвеса
На основании (28) по известным параметрам установки (R, r, z0, М) и измеренному на опыте периоду колебаний можно определить момент инерции системы.
Расчётная часть
R = 12,4×10-2 м.; R1 = 54,25×10-3 м.;
R2 = 49×10-3 м.; r = 3,2×10-2 м.;
L = 192×10-2 м.; mпл = 373×10-3 м.;
DR » 0; DR1 » 0;
DR2 » 0; Dr » 0;
DL » 0; Dmпл » 0;
mтела = 187×10-3 кг.; Dmтела » 0;
№ п/п |
1) Определение J платформы |
2) Определение J тела |
3) Проверка аддитивности момента инерции |
4) Проверка теорема Штейнера | ||||||||
N |
t, с |
Dt, с |
n |
t, с |
Dt, с |
n |
t, с |
Dt, с |
n |
t, с |
Dt, с | |
1 |
15 |
69 |
1,99×10-4 |
15 |
59 |
1,99×10-4 |
15 |
52 |
1,99×10-4 |
15 |
59 |
1,99×10-4 |
2 |
66 |
61 |
54 |
60 | ||||||||
3 |
70 |
59 |
53 |
58 | ||||||||
Ср. Знач. |
68,33 |
59,67 |
53 |
59 |
Вначале определим периоды Ti колебаний системы во всех случаях снятия показаний (см. таблицу).
Ti = tср/n; 1) c. 2)
c. 3) c. 4) c.
Используя измерения снятые в 1-ом случае, по формуле (28) рассчитаем момент инерции ненагруженной платформы Jпл:
кг×м2.
Вычислим значение абсолютной погрешности DJпл:
D Jпл = sJпл × tст; где tст = 1,95 при P = 0.95
;
;
Полагая, что значения среднеквадратичных погрешностей m, R, r и L пренебрежимо малы (в силу приведения их значений по умолчанию), формулу для вычисления DJпл можно свести к формуле:
.
В свою очередь st найдём следующим способом:
; ;
; при k = 1,1 (для P = 95) и c = 1 с.
с.
Тогда DJпл принимает значение:
кг×м2.
Теперь найдём момент инерции системы (J платформы с грузом) для 2-ого случая.
кг×м2.
Далее найдём момент инерции тела (Jт) исходя из аддитивности момента инерции по формуле:
Jт = J - Jпл;
Jт = (4,55 – 3,97)×10-3 = 5,8×10-4 кг×м2.
Найдём момент инерции того же тела через его массу и размеры (по формуле (5)):
кг×м2.
Вычислим суммарный момент инерции системы для 3-его случая.
кг×м2.
Для проверки аддитивности момента инерции надо убедиться в верности соотношения (2).
I = J + Jт = Jпл + 2Jт;
(45,5 +5,8)×10-4 = (39,7 + 2×5,8)×10-4 » (47,8 ±1,99)×10-4 кг×м2.
Остаётся проверить теорему Штейнера с использованием результатов измерений в 4-ом случае.
Определим момент инерции всей системы по формуле (28):
кг×м2.
Теперь рассчитаем момент инерции тела по приведённой ниже формуле.
Jт = (J - Jпл)/2;
Jт = 10-3×(5,92 – 3,97)/2 = 0,97×10-3 кг×м2.
Найдём момент инерции тела через выражение (8), при a = м.
0,58×10-3 + 187×10-3
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода