Принципиальная тепловая схема энергоблока с турбиной К-210-130
Аннотация
В данной выпускной работе была составлена и рассчитана схема конденсационного энергоблока мощностью 210 мвт с турбиной К-210-130. В исследовательской части был произведён тепловой расчёт парогенератора.
Работа включает в себя страниц, таблиц, рисунков, К работе также прилагается листа графических работ формата А1.
конденсационный энергоблок к
отел турбоустановка
Введение
В данной дипломной работе составлена и рассчитана принципиальная тепловая схема энергоблока с турбиной К-210-130. Определено основное содержание технологического процесса преобразования тепловой энергии на электростанции. На чертеже, изображающем принципиальную тепловую схему, показано теплоэнергетическое оборудование вместе с линиями (трубопроводами) пара и воды (конденсата), связывающими это оборудование в единую установку.
При расчёте принципиальной тепловой схемы была достигнута основная цель - определены технические характеристики теплового оборудования, обеспечивающие заданный график электрической нагрузки и требуемый уровень энергетических и технико-экономических показателей электростанции. На первом этапе были определены состояния водяного пара в ступенях турбины. На втором этапе были составлены соотношения материальных балансов потоков пара и воды. Для удобства расчётов расход свежего пара на турбину принят за единицу, а остальные потоки пара и воды выражены по отношению к этой величине. На третьем этапе были составлены и решены (если требуется, то совместно с уравнениями материального баланса) уравнения теплового баланса теплообменников турбоустановки. На четвёртом этапе был определён расход пара на турбину из условия заданной электрической мощности. Пятый завершающий этап - определение энергетических показателей турбоустановки и энергоблока.
В исследовательской части были отражены проблемы организации эксплуатации котлоагрегатов, связанные с образованием отложений на внутренних и внешних поверхностях нагрева. Разработаны методы борьбы с данными отложениями и сделаны соответствующие выводы.
Технологическая часть
1. Расчёт тепловой схемы конденсационного Энергоблока 210 мвт
1.1 Принципиальная тепловая схема энергоблока мощностью 210 мвт
Расчёт принципиальной тепловой схемы проведён с целью определения параметров и величины потоков рабочего тела (пара, конденсата и питательной воды) в различных участках технологического цикла, а также мощности и показателей тепловой экономичности.
Энергоблок 210 мвт состоит из барабанного парогенератора и одновальной конденсационной турбоустановки К-210-130 номинальной мощностью 210 мвт, с параметрами свежего пара:
Давление Р=130 ат. (12,75 мпа);
Температура 565 °С.
Топливо – уголь Егоршинского месторождения (Свердловская обл.), марки ПА. Принципиальная тепловая схема энергоблока приведена на рисунке 1.1
Турбина имеет три цилиндра. Свежий пар поступает в ЦВД, включающий регулирующую одновенечную ступень и одинадцать ступеней активного типа. После ЦВД пар поступает на промежуточный перегрев, после которого с параметрами рпп=2,35 мпа и tпп= 565 °С поступает в ЦСД. Цилиндр среднего давления имеет одинадцать ступеней. После ЦСД пар поступает в двухпоточный цилиндр низкого давления, с четырьмя ступенями в каждом потоке.
Конечное давление пара в турбине перед конденсатором Рк=0,034 ат. (0,00343 мпа).
Турбина имеет 7 регенеративных отборов пара. Подогрев конденсата и питательной воды паром, отбираемым из проточной части турбины, является одним из эффективных способов повышения экономичности тепловых электрических станций, получивших развитие с повышением начальных параметров пара и внедрения промперегрева. Регенеративный подогрев существенно сокращает удельный расход топлива на выработку электроэнергии. Основным преимуществом регенерации является уменьшение расхода пара в конденсатор и потерь тепла в нём. Регенеративный подогрев питательной воды производится последовательно в нескольких подогревателях, что существенно повышает тепловую экономичность цикла. В зависимости от начальных параметров и исходной температуры нагреваемого конденсата теплофикационных отборов дополнительная выработка электроэнергии на регенеративных отборах ТЭС составляет 8-35 % от выработки на внешнем теплопотреблении.
Подогрев питательной воды осуществляется в поверхностных и смешивающих (при непосредственном контакте воды с паром) регенеративных подогревателях. Основными подогревателями в тепловой схеме ТЭС являются поверхностные. В качестве смешивающегося подогревателя зачастую используется деаэратор, служащий в основном для удаления вредных примесей газов из рабочего тела. В смешивающих подогревателях недогрев равен нулю, что обусловливает большую их тепловую экономичность.
Конденсат турбины подогревается в охладителе уплотнений ОУ и охладителе эжектора ОЭ, в четырех регенеративных подогревателях низкого давления, а также в конденсаторе испарителя (КИ). После деаэратора вода питательным насосом прокачивается через три подогревателя высокого давления. Все ПВД имеют встроенные пароохладители, а также снабжены встроенными охладителями дренажа помимо основной конденсирующей поверхности, что повышает эффективность регенеративного цикла. Охладитель пара использует теплоту перегрева пара для дополнительного подогрева питательной воды на 2-5 °С выше температуры воды на выходе из основной поверхности. Охладитель конденсата охлаждает конденсат греющего пара ниже температуры насыщения, что уменьшает вытеснение пара более низких отборов в случае каскадного слива конденсата из подогревателя. Установка охладителей пара и конденсата даёт экономию топлива до 0,5-1 %.
Дренажи ПВД сливаются каскадно в деаэратор. Дренажи ПНД4, ПНД5 сливаются каскадно в П6(смешивающего типа) . Дренажи подогревателей ПНД7, ОУ и ОЭ поступают конденсатосборник конденсатора.
Потери пара и воды энергоблока восполняются дистиллятом, получаемым из одноступенчатой испарительной установки. В испаритель (И) подается греющий пар из 5-го отбора турбины. Вторичный пар конденсируется основным конденсатом в конденсаторе испарителя (KИ), включенном между подогревателями ПНД5 и П6. Химически очищенная добавочная вода поступает в испаритель через подогреватель добавочной воды (ПДВ) и деаэратор испарителя (ДИ). Дистиллят откачивается в деаэратор питательной воды дренажным насосом.
Принята следующая схема использования протечек из уплотнений турбины: из стопорных клапанов ЦВД протечки поступают в “горячую” нитку промежуточного перегрева; протечки регулирующих клапанов ЦВД, стопорных и регулирующих клапанов ЦСД и первых камер уплотнений ЦВД поступают в деаэратор питательной воды; из вторых камер уплотнений ЦВД, из концевых уплотнений ЦВД, ЦСД и ЦНД пар отсасывается паровым эжектором в охладитель уплотнений ОУ; к концевым уплотнениям ЦВД, ЦСД и ЦНД пар подводится пар из деаэратора питательной воды.
Воздух из конденсаторов ЦНД отсасывается водяными эжекторами.
1.2 Параметры пара и воды турбоустановки
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода