Гармонические колебания в параллельном контуре
Рис. 6
Вывод: При в параллельном контуре устанавливается индуктивный режим колебаний, и ток в контуре отстает от напряжения.
3) т.е. и .
Проводимость контура в этом случае равна активной проводимости G. Контур имеет активный характер, т.е. ток совпадает по фазе с напряжением на контуре и численно равен току через проводимость (рис. 7).
Рис. 7
Такой режим называется резонансом токов и имеет важное практическое значение.
Проведенный анализ показывает, что режим колебаний в параллельном контуре определяется соотношением реактивных проводимостей и .
Любой из рассмотренных режимов может быть получен несколькими способами: изменением частоты генератора, индуктивности и емкости.
Вывод: Значения режимов ГК в контуре позволяет качественно анализировать процессы, проходящие в контурах, произведя соответствующие инженерные расчёты.
3. Резонанс токов
1) Резонансная частота
Выше показано, что резонанс токов наступает на частоте, при которой:
откуда .
Т.е. резонансная частота равна частоте собственных колебаний контура. Изменение достигается изменением L или C (чаще).
2) Волновое сопротивление контура
На резонансной частоте, откуда (Ом), т.е. волновое сопротивление контура равно сопротивлению одного из реактивных элементов.
Обычно волновое сопротивление ПК, используемых в электрических цепях, имеет порядок несколько сотен Ом (100500).
3) Добротность контура
По определению , где, следовательно .
Т.к. на резонансной частоте численные значения проводимостей и одинаковые, то добротность можно вычислить по следующей формуле:
, т.о. .
4) Резонансное сопротивление контура, токи в ветвях при резонансе
т.к. при резонансе , то и , т.е. сопротивление контура при резонансе чисто активно и наибольшее по величине.
Действительно, полное сопротивление контура равно:
при , и .
Определим соотношение между током источника и током через реактивный элемент:
, т.е. .
Аналогично можно показать, что.
Вывод: При резонансе токи в ветвях параллельного КК максимальны и в Q раз больше тока источника. Этим и объясняется название режима – резонанс токов.
При резонансной частоте задающий токисточника замыкается через элемент проводимости контура. Токи же в реактивных элементах контура взаимно компенсируют друг друга относительно внешней цепи контура, или, аналогично, что при резонансной частоте круговой ток замыкается через реактивные элементы контура. При этом , а наибольшее по величине. При резонансе напряжение на контуре максимально (). Именно по этому признаку параллельный КК настраивается на резонансную частоту.
4. Комплексные передаточные функции параллельного контура
Выражения для частотных характеристик параллельно колебательного контура относительно напряжения, можно получить из следующей комплексной передаточной функции:
.
Преобразуем знаменатель :
т.о. .
Здесь частотно-зависимым является множитель называемый относительной расстройкой. Произведение называют обобщенной расстройкой контура.
C учетом этого:.
Из выражения получаем
АЧХ: ,
и ФЧХ: .
АЧХ называют резонансной характеристикой параллельно колебательного контура. Максимальное значение эта характеристика имеет при резонансной частоте (), .
Резонансную характеристику контура принято нормировать относительно ее максимального значения. Нормированная резонансная характеристика: т.е. отношение амплитуду напряжения при заданной частоте к амплитуде напряжения при резонансе:
.
Нормированная резонансная характеристика есть не что иное, как АЧХ контура относительно тока в элементе активного сопротивления.
Другие рефераты на тему «Физика и энергетика»:
Поиск рефератов
Последние рефераты раздела
- Автоматизированные поверочные установки для расходомеров и счетчиков жидкостей
- Энергосберегающая технология применения уранина в котельных
- Проливная установка заводской метрологической лаборатории
- Источники радиации
- Исследование особенностей граничного трения ротационным вискозиметром
- Исследование вольт-фарадных характеристик многослойных структур на кремниевой подложке
- Емкость резкого p-n перехода