Экспериментальное подтверждение двойственности свойств магнитного поля

1.Природа двойственности. Пространственные распределения векторных магнитных потенциалов поля элемента однонаправленного тока зарядов

А = f (J ), (1)

и скалярных потенциалов поля гипотетического монополя Дирака

φm = f (m ) (2)

различаются следующим образом. У токового поля эквипотенциальные поверхности имеют вид концентричных цилиндрических оболочек, преоб

разующиеся в себя при поворотах вокруг своей оси. У зарядового поля эквипотенциальные поверхности подобны концентричным сферическим оболочкам, преобразующимся в себя при любом пространственном повороте относительно своего центра. Очевидно, что потенциальное шарообразное магнитное поле геометрически симметричнее цилиндрообразного циркуляционного. Поскольку симметрии причины и следствия не могут быть разными, то природа двойственности магнитного поля обусловлена двумя видами геометрической симметрии его источников. Это согласуется с тем, что плотность тока в (1) описывается цилиндрообразным аксиальным векторм, а магнитный заряд в (2) – шарообразным скаляром [1].

В статье будет дано теоретическое обоснование и опытное подтверждение тому, что более симметричным по отношению к однонаправленному локальному току зарядов (J) может быть не только гипотетический монополь Дирака (m), но и локальная идеализация сферического центрально-симметричного распределения токовых элементов, которому соответствует такая же симметрия поля магнитных потенциалов

|A| = f (|J|). (3)

Скалярный характер шарообразного источника и его поля магнитных потенциалов обусловлен отсутствием выделенного у них пространственного направления.

Предложенная локальная идеализация имеет практически реализуемый протяжённый аналог в виде расширения (сжатия) электрически заряженной упругой сферической оболочки.

2. Двойственность локальной идеализации токового источника. Локальная совокупность произвольно направленных элементов тока зарядов характеризуется суммарным однонаправленным вектором.

При центрально-симметричном распределении векторов плотности тока геометрическое суммирование даёт в итоге нуль-вектор. Аналогичный результат получается для коллинеарных токам векторов магнитного потенциала (Рис.1).

J

J = 0 ∑А = 0

Рис.1

Как и в любой магнитостатической ситуации, в центрально-симметричной, радиально движущиеся вслед за своими зарядами электрические поля обладают кинетическими энергиями положительного знака. В отличии от токовых и полевых векторов они взаимно не компенсируются. Следовательно, скалярная сумма кинетических энергий имеет конечную величину, которой эквивалентно общее магнитное поле.

Выявленное истинное противоречие между наличием конкретного количества магнитной энергии и нуль-векторным описанием источника и его магнитного поля имеет фундаментальную основу. Скалярное суммирование кинетических энергий подчиняется принципу сохранения энергии. А геометрическое суммирование токовых и полевых векторов – принципу суперпозиции.

Суть разрешения противоречия ясна. Если есть магнитная энергия, то должно быть конкретное описание источника магнитного поля. И самого поля с конкретным магнитным свойством.

Поскольку математически корректные, но физически иррациональные, нуль-векторы тока и магнитного потенциала для этих целей не годится, то заменой им могут быть скалярные суммы модулей векторов, содержащие количественные характеристики

J ≡ |J| , (4)

А ≡ |А|. (5)

Отсутствие у обоих скалярных сумм выделенного пространственного направления согласуется с шарообразной симметрией локальной магнитостатики.

Переход от неизбежного нуль-векторного результата к логически оправданной скалярной сумме модулей (4) является теоретическим обоснованием двойственности локальных токов

J = ρ V, (6)

| J | = ρ |V|. (7)

Разные по своей геометрической симметрии причины --цилиндрообразный и шарообразный токи-- порождают соответствующие им следствия - цилиндрообразное и шарообразное поля магнитных напряжённостей

J = rotH, (8)

| J | = div|H|.(9)

3.Двойственность магнитной силы. На рисунке.2 изображена идеализация протяжённых аксиальных центрально-симметричных токов из [2], [4].

i1 i2

Страница:  1  2  3 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы