Процесс построения опоры для линии электропередачи в условиях ветрености - необходимые качества

или

После упрощения получим:

откуда даН/мм2.

Дальнейший расчёт проводим

аналогично расчёту режима II:

даН;

;

;

;

По полученным данным строим кривую провисания провода аналогично режиму I (см. рисунок 3).

Рис.3

1.5.2 Режим III

Для режима III имеем:

или

После упрощения получим:

откуда даН/мм2.

даН;

;

;

;

По полученным данным строим кривую провисания провода аналогично режиму III (см. рисунок 4).

2. Расчёт опоры ЛЭП

2.1 Постановка задачи и исходные данные

Для расчётной схемы опоры ЛЭП необходимо:

определить интенсивность давления на ферму ветровой нагрузки (район по ветру I);

определить усилия в элементах плоской фермы;

подобрать из условия устойчивости безопасные размеры поперечного сечения отдельно для поясов и раскосов решётки в виде равнобокого уголка;

рассчитать опасный узел сварного и болтового соединений, выполнить эскизы этих узлов.

При расчёте принять:

допускаемые напряжения при растяжении и сжатии для прокатных профилей даН/см2 (210 МПа);

допускаемые напряжения для сварных швов, болтов, заклёпок на срез даН/см2 (130 МПа); на смятие даН/см2 (340 МПа);

сосредоточенный момент

сосредоточенная сила Р = 1000 даН (0,01 МН);

параметр а = 2 м.

2.2 Расчёт ветровой нагрузки, действующей на опору

Определим величину расчётного скоростного напора:

даН/м2,

Где даН/м2 –

скоростной напор ветра (VI район)

n = 1,3 - коэффициент перегрузки для высотных сооружений;

k =1 - поправочный коэффициент изменения скоростного напора, зависящий от высоты и типа местности (см. п.1.1).

Коэффициент лобового сопротивления для пространственной четырёхгранной фермы при направлении ветра на грань:

где

Сх = 1,4 - аэродинамический коэффициент для плоской фермы;

m = 0,3 - коэффициент увеличения давления ветра на подветренную грань, зависящий от типа решётки.

Площадь проекции опоры на плоскость, перпендикулярную направлению ветра (рисунок 3):

,

где

м2 - площадь проекции прямоугольной части;

м2 - площадь проекции трапециевидной части;

-угол наклона боковой стороны трапеции к ветру.

При этих значениях получим:

м2.

Вычисляем давление ветра на опору:

даН,

где

b = 1,5 - коэффициент увеличения скоростного напора, учитывающий его динамичность и пульсацию;

поправочный коэффициент при действии ветра на ребро;

расчётная площадь проекции конструкции по наружному обмеру на плоскость, перпендикулярную направлению ветра; здесь коэффициент заполнения плоской фермы.

Интенсивность ветровой нагрузки

даН/м.

Принимаем qw = 131 даН/м.

2.3 Определение усилий в стержнях фермы

2.3.1 Определение узловой нагрузки

Интенсивность распределённой нагрузки разносим по узлам фермы. Усилие, приходящееся на одну панель, определяем по формуле:

тогда

2.3.2 Вычисление реакций в опорах

Из условий равновесия:

Рис.5

Вычисление усилий в стержнях фермы

Для определения усилий в стержнях используем метод сечений и способ вырезания узлов.

рис.7

сечение I - I (рис.7)

Условия равновесия:

рис.8

рис.9

2) сечение 2 - 2 (рис.9)

Условия равновесия:

Страница:  1  2  3 


Другие рефераты на тему «Физика и энергетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы