Теория МО ЛКАО

Молекулярные интегралы и формула энергетические уровни:

Эти формулы удобны для графического исследования уровней МО с помощью компьютера.

Наконец, для проверки физической корректности расчётов и положенных в их основу схем про­анализируем предельные значения интегралов и уровней энергии МО:

Пределы интегралов

(Квази-ион He+) Пределы электронной энергии

Можно видеть, что с физической точки зрения расчёт совершенно верно предсказывает пределы изменения электронной энергии системы в электростатическом поле ядер в гипотетическом процессе их сближения от бесконечного удаления до гипотетического слияния. Так подтверждается корректность теории, и это особенно важно, поскольку при её по­строении было использовано значительное количество непростых приближений.

В простейшей модели без оптимизации базисной АО получаем :

Показатель экспоненты в АО фиксирован и равен

Все выводимые ниже выражения легко получаются из более общих выражений при

Интегралы существенно упрощаются и получаются следующие выражения:

1) Уровень исходной базисной АО

2) Интеграл перекрывания:

.

Интегрируя по частям, получаем

,

3) Кулоновский интеграл:

,

4) Резонансный интеграл:

Отсюда получаются энергетические уровни МО в виде:

.

Этот простой подход был исторически первым на пути построения квантово-механической теории валентности. Несмотря на свою ограниченность, он позволил на качественном уровне по­нять и происхождение электронного облака в межъядерной области, и природу устойчивости простейшей молекулярной системы. В количественном отношении этот примитивный подход очень слаб, и, вроде бы, не идёт ни в какое в сравнение с уточнёнными расчётами. НО .!!!

Самый трудный шаг на неизведанном и полном неясностей пути создания ранее не сущест­вовавшей теории всегда первый. Автор этого учебного текста наблюдал триумфальное развитие квантовой химии с середины 60-х годов по настоящее время (январь 1999 года) и застал пере­ход от её исходного состояния к уже современному этапу и видел ещё слегка недоверчивое, изумлённое отношение химиков-синтетиков - людей, вообще-то весьма прагматично и дерзко мыслящих о веществе, к необычному ещё в то время варианту теории валентности, которая властно и как бы играючи вытесняла вариант привычной с 19 века качественной теории Бутлерова, оперирующей валент­ными штрихами с её причудливым нагромождением дополнительных конструкций. Оказалось, что не только качественно, но и количественно можно легко и точно объяснять и предсказывать спектрально наблюдаемые свойства молекул. Автор со студенческих лет хорошо помнит многочисленные дискуссии о сравнительных достоинствах и недостатках методов МО ЛКАО и ВС ЛКАО. Где-то сейчас ме­тод ВС .?!!

Бесспорным фаворитом теории валентности стал метод МО ЛКАО, идеально приспособлен­ный к алгоритмам современной вычислительной математики и компьютерной техники.

Сейчас уже совершенно ясно, что теория ЛКАО МО была настоящей идейной револю­цией. В её основу положено одноэлектронное приближение. Молекулярный ион водорода был первой и простейшей системой, на примере которой было понято и теоретически изучено физи­ческое происхождение феномена валентности.

Необходимые молекулярные интегралы принимают вид

.

Выражая локальные переменные (r1, r2) через единые декартовы координаты , запишем выражение МО в виде:

.

Оптимизированные параметры отвечают абсолютному минимуму целевой функции - полной энергии связывающей МО, определяемой в зависимости от двух переменных: межъядерного расстояния и эффективного заряда ядра - показателя экспоненты в формуле базисной АО. Энергетические уровни передаются формулой, на первый взгляд того же вида, что и в расчётах с одним варьируемым параметром R:

.

Однако весьма существенное качественное отличие этой формулы состоит в том, что расчёт с двумя варьируемыми параметрами R , z состоит в том, что в общем случае является довольно сложной функцией обеих переменных, и лишь его предел переходит в величину E1s(H):

,

Оптимизация энергетического уровня за счёт дополнительного варьирования показателя экспоненты приводит к намного лучшему согласию с экспериментом.

В первых оригинальных работах в 20-х годах эти три характеристики основного состояния были рассчитаны с применением точной аналитической расчётной процедуры (Хиллераас). В настоящее время мощность вычисли­тельной техники такова, что вся эта вычислительная процедура легко моделируется численными методами и реально доступный объём вычислений таков, что без особых проблем достигается любое графическое сопро­вождение расчётов, и те же самые результаты легко получаются в рамках прямого числового расчёта функ­ции. На её пространственном графике, называемом потенциальной поверхностью, наблюдается искомый абсолютный минимум. Его координаты следующие:  

Варьирование эффективных зарядов в базисных атомных орбиталях оказалось очень эффективным и гибким способом резкого улучшения расчёта молекулярного строения. Поэтому оно заняло очень важное место среди специфических приёмов современной квантовой химии. Есть и другие дополнительные способы улучшения базисных АО, но всё это означает лишь то, что в расчётах молекул атомные орбитали являются не более, чем удачными математическими базисными единицами разложений сложных функций МО в ряды вида ЛКАО. Рассматривать же АО в молекуле в самостоятельной физической роли нецелесообразно, хотя такой соблазн велик, и среди химиков ещё лет 20 назад был очень распространён.

Страница:  1  2  3 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы