Производство синтетического пантотената кальция (витамина В3)

СИНТЕЗ D(+)-ПАНТОТЕНОВОЙ КИСЛОТЫ ИЛИ ЕЕ РАЦЕМАТА

Последней стадией синтеза является конденсация D(-) или D, L-пантолактона с b-аланином. Этот процесс осуществляют различными путями:

а) при нагревании до 70° С D(—)-пантолактона с этиловым или метиловым эфиром b-аланина с последующим омылением с выходом D(+)-пантотеновой кислоты 50% по схеме:

б) лучшие результаты получают при конденсации пантолактона с натриевой или кальциевой солью b-аланина в среде безводного спирта;

в) при конденсации сухой натриевой соли b-аланина с D-(—)-пантолак-тоном при температуре 100—105° С получают пантотенат натрия с высоким выходом (92%). Имеются указания, что при использовании в реакции конденсации свободного р-аланина выход пантотеновой кислоты весьма низок;

г) однако выход значительно повышается, если конденсацию вести в среде вторичных или третичных аминов в присутствии окиси кальция или этилата натрия Н. Жданович указывает, что кальциевая соль пантотеновой кислоты была получена при конденсации b-аланина и D, L-пантолактоиа в среде метилового спирта в присутствии диэтиламина с обработкой реакционной массы окисью кальция с выходом в 90,2%.

Из всего изложенного можно прийти к технологической схеме производства D(+)-пантотеновой кислоты или ее рацемата, заключающейся в следующих стадиях синтеза:

получение b-аланина аммонолизом акрилонитрила в одну стадию;

одностадийный синтез D, L-пантолактона путем альдольной конденсации изомасляного альдегида и формальдегида и цианирования b-окси-a, a-диметилпропионового альдегида ацетонциангидрином и последующего омыления и лактонизации;

расщепление D, L-пантолактона-рацемата и выделение D(-) пантолактона с помощью L(+) треоамина;

конденсация D(—)-пантолактона и b-аланина в среде метилового спирта в присутствии диэтиламина.

ПЕРСПЕКТИВНЫЕ ПУТИ СИНТЕЗА Д-(—)-ПАНТОЛАКТОНА

Основными недостатками процесса получения медицинского витамина В3 является стадия разделения на оптические антиподы D, L-пантолактона.

В настоящее время идет интенсивный поиск методов синтеза D-(—) -пантолактона, исключающих трудоемкий процесс разделения рацемата.

Решение этой задачи возможно сейчас двумя путями асимметрического синтеза D-(—)-пантолактона из 3-оксо-4,4-диметил-g-бутиролактона (кетопантолактона):

1) Способ асимметрического гидрирования (Япония).

В качестве катализатора используют RhCIs (с лигандом М-ацилфенилпирролидинфосфином).

2) Способ асимметрического биосинтеза.

Некоторые микроорганизмы содержат специфический фермент—кетопантолактонредуктазу, катализирующий реакцию восстановления кетопантолактона в пантолактон:

Соотношение изомеров зависит от вида штаммов применяемых микроорганизмов.

Некоторые дрожжи и грибы, например, Rhodotorula mi-nutaIFO 0920 и Aspejrg'illus niger могут выполнять стереонаправленное превращение кетопантолактона в D-(—)-пантолактон, который далее превращают в Д-(+)-пантоте-новую кислоту. Установлено, что кетопантолактон за 48 ч трансформируется в D-(—)-пантолактон с выходом 86—87% при исходном содержании в среде 45 г/л. При этом производительность ферментера объемом 20 м3— 1 кг/м3ч.

Среди других вариантов синтеза витамина В3 с использованием методов биотехнологии наиболее перспективным представляется получение паитотеновой кислоты из се структурных компонентов с помощью иммобилизованных бактериальных клеток некоторых штаммов. Иммобилизованные -клетки синтезируют Д-(+)-пантотеновую кислоту из (b-аланина и пантоата калия в присутствии АТФ, КС1 и сульфата магния.

Важнейшей коферментной формой D- ( ) -пантотеновой кислоты является кофермент ацилирования — КоА (кофермент А). Химический синтез его очень сложен, метод же биосинтеза с применением сухих бактериальных клеток является более простым по сравнению с химическим синтезом и позволяет в определенных условиях накапливать КоА до 115 г/л в культуральной жидкости. Исходным субстратом при этом является 4-фосфопантотсновая кислота, получаемая химическим синтезом.

Таким образом, современные достижения биотехнологии в области биосинтеза витамина В3 позволяют уже сегодня ставить вопросы о его практическом применении, в частности, для стереонаправленного синтеза D-(-)-пантолактона и получения коферментной формы витамина В3—кофермента А — комбинированным химико-ферментативным способом.

Как было отмечено ранее, применение современных достижений биотехнологии в органической связи с химической технологией возможно и для производства других витаминов, важнейшим из которых является производство аскорбиновой кислоты (витамина С).

Литература

1. Shrimton D. H. (2008)Микронутриенты и их взаимодействие. Российский медицинский журнал. Т. 16., № 7.

2. Морозкина Т.С. Витамины – М.:Медкнига, 2002

3. Лифляндский В. Г. Витамины и минералы. – М.:Эксмо, 2010

4. Малахов Г. П. Витамины и минералы в повседневном питании. – М.:Просвещение, 2009

5. Скальный А.А. Микроэлементы – М.:Промкнига, 2002

6. Ула Унгер-Гебель. Витамины. – М.:Эксмо, 2003

7. Тюкавкина И.Р. Органическая химия для студентов медицинских вузов. – М.:Медкнига, 2000

8. Энциклопедия витаминов и БАД

Страница:  1  2  3 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы