Производство и переработка масличного сырья
Полевой шпат представляет собой безводный алюмосиликат, содержащий оксиды кремния, алюминия, кальция, или натрия и калия. Характеризуется высокой химической стойкостью. Выпускается с частицами большого и среднего размеров и имеет низкую удельную поверхность.
Применяется в тех же целях, что и КК.
Достоинствами полевого шпата как наполнителя являются: прозрачность или полупрозрачность нап
олненных или полимерных материалов; хорошая смачиваемость и диспергируемость в большинстве полимеров; легкость удаления воздуха, попадающего в композицию в процессе ее приготовления; низкая вязкость композиции, даже при высоком содержании наполнителя; легкость окрашивания и малый расход красителя для достижения желаемой окраски; повышенные износостойкость и прочность, в сравнении с КМ, содержащим КК, вследствие более высокой адгезии, а также химическая и атмосферостойкость; пригодность для производства материалов, соприкасающихся с пищевыми продуктами, безвредность.
К недостаткам полевого шпата следует отнести крупнозернистость; повышенную абразивность, что требует их введения на заключительных стадиях совместно со связующим, возможность седиментации в низковязких полимерах.
Эффективно применение полевого шпата для наполнения полярных полимеров - сополимеров этилена, винилацетата, полиамида, полиуретана и др. При этом получаются КМ с повышенными жесткостью, прочностью при изгибе теплостойкостью.[3]
Диоксид кремния. В настоящее время известны 22 модификации диоксида кремния, имеющие один и тот же химический состав [8]. Многие из них применяются в качестве наполнителей полимерных материалов.
К таким наполнителям относятся; пирогенный аморфный SiO2, силикагель, природный микрокристаллический SiO2, микрокристаллический кварц, диатомит, стеклообразный SiO2 (плавленый кварц).
Пирогенный аморфный SiO2 представляет собой порошок, состоящий из сферических частиц коллоидных размеров, с высокой удельной поверхностью (примерно 380 м2/г). Он проявляет тиксотропный и усиливающий эффекты в КМ. Недостатком является значительное увеличение вязкости наполненных композиций. Применяется для наполнения резин, термо- и реактопластов.
Используются для наполнения силоксановые каучуки, вулканизуемые при повышенных температурах, в качестве усиливающего наполнителя для натурального и синтетического каучуков. При этом повышаются прочность при растяжении, износостойкость, сопротивление разрыву, а также обеспечивается прозрачность или полупрозрачность РТИ.
При введении пирогенного SiO2 в жидкие эпоксидные смолы происходит их загустевание, в результате образования водородных связей между силональными группами соседних частиц SiO2 и между силональными группами SiO2 и амино- или иминогруппами отвердителей эпоксидных олигомеров. При этом образуется трехмерная сетчатая структура.
Используется пирогенный SiO2 для регулирования и модификации реологических свойств ПВХ.
Осажденный аморфный SiO2 представляет собой порошок, состоящий из частиц коллоидных размеров, получаемый в результате химических реакций, протекающих в водной среде. Наименьшие размеры частиц примерно 0,002 мкм.
Силикагель представляет собой порошкообразный SiO2, состоящий из пористых частиц размером 2-25 мкм, образующихся в результате реакций силиката с минеральными кислотами.[3]
Осажденный SiO2 вводится в качестве антиадгезионной добавки, в состав листов материалов на основе ПВХ, получаемых каландрованием, при этом повышаются твердость и жесткость композиций без заметного ухудшения физико-механических свойств. Он также вводится в состав пластизолей, используемых для нанесения покрытий на тканую основу, с целью повышения их устойчивости к загрязнению. Применяется в производстве прозрачных КМ на основе термопластов; для наполнения феноло-формальдегидных смол при изготовлении тормозных прокладок, повышая стойкость к тепловому старению и сопротивление истиранию.
Введение в термопласты силикагеля препятствует слипанию листовых и пленочных материалов, облегчает диспергирование пигментов, регулирует вязкость, улучшает технологические свойства композиций.
Карбид кремния - SiС (карборунд). Плотность 3217 кг/м3, удельное объемное электрическое сопротивление (рv)= 10 Ом-см. Вводят его в полимерные композиции для повышения сопротивления износу.[3]
Металлические порошки. Металлические дисперсные наполнители придают полимерным КМ повышенные тепло- и электропроводность, магнитные свойства, экранирующую способность по отношению к радиационным излучениям. Порошкообразные металлы стали доступны для широкого применения благодаря развитию порошковой металлургии. Наиболее широко используются порошкообразные: железо, медь, алюминий, титан, никель, цинк, свинец.
Сферические наполнители. Различают сплошные и полые микросферы. Сплошные стеклосферы имеют гладкую поверхность и оказывают минимальное влияние на вязкость и течение полимерной матрицы, обеспечивают идеальную упаковку частиц наполнителя, следствием чего является отсутствие неравномерного распределения напряжений вокруг частиц и в результате улучшение физико-механических свойств наполненных полимеров.[5]
1.2.5. Органические дисперсные наполнители
К органическим дисперсным наполнителям относятся:
Технический углерод (сажа). По методу получения сажа может быть печной, канальной, термической, ламповой и ацетиленовой.
Канальные (диффузионные) сажи получают при неполном сгорании природного газа или его смеси с маслом (например, антраценовым) в так называемых горелочных камерах, снабженных щелевыми горелками.
Печные сажи получают при неполном сжигании масла, природного газа или их смеси в факеле, создаваемом специальным устройством в реакторах (печах). Сажа в виде аэрозоля выносится из реактора продуктами сгорания и охлаждается водой.
Термические сажи получают в специальных генераторах при термическом разложении природного газа или ацетилена без доступа воздуха.
Сажа нетоксична, в значительной степени химически нейтральна, сохраняет свойства во времени, недорогая. Кроме углерода, сажа содержит водород (0,5-0,9 масс %), серу (0,1-0,8%), кислород (0,1-4,3 масс.%).
Сажу вводят в ПЭ, ПП, ПС, АБС пластика, гомо- и сополимеры винилового ряда, в полиэфирных стеклопластиках используют для регулирования продолжительности гелеобразования и окрашивания.[9]
Древесная мука. Представляет собой тонкоизмельченную и высушенную древесину, содержащую целлюлозу и лигнин.[3]
Она имеет волокнистую структуру. Изготавливается преимущественно из мягкой древесины (сосны, канадской пихты), но получают также из лиственных деревьев. Получают размолом опилок, щепы, стружки на жерновой мельнице. Используются частицы размером 150-350 мкм. Этот в дешевый наполнитель широко применяется для получения фенольных и мочевиноформальдегидных пресс-порошков общего назначения. Недостатки древесной муки (особенно из древесины лиственных пород) низкие тепло-, влаго-, хемостойкость.
При введении в связующие древесной муки уменьшаются усадка и стоимость, повышается модуль упругости и жесткость. Из наполненных полиолефинов и ПВХ изготавливают плитки, паркетные полы, оконные рамы.
Другие рефераты на тему «Химия»:
- Методы выделения и анализа кумаринов в лекарственное растительное сырьё
- Способы получения стирола. Совмещенное дегидрирование и окисление метанола
- Транспортные процессы и гетеропереходы в твердофазных электрохимических системах
- Роль алхимии в становлении химии
- Скорость образования, расходования компонента и скорость реакции