Анализ экономических данных в странах третьего мира

В таблице значений критерия Дарбина-Уотсона для уровня значимости 5% при m=4и n=32 критические значения d1=1.14, d2=1,74,

В нашем расчете значение d-критерия попадает в интервал от d2 до 2, автокорреляция отсутствует.

4) Проверка на гетероскедастичность моделей с использованием теста Бреуша-Пагана

Для этого проверки на гетероскедастичность воспользуемся таблицами 6 и 7

Затем с

троим регрессию, в которой за зависимую переменную берется столбец квадратов остатков еi2, а за зависимые переменные – переменные Х1, Х2, Х3, Х4,

Результат представлен в таблицах 8,9,10

Таблица 8. Регрессионная статистика

Множественный R

0,222046

R-квадрат

0,049305

Нормированный R-квадрат

-0,09154

Стандартная ошибка

5,309145

Наблюдения

32

Таблица 9. Дисперсионный анализ

 

df

SS

MS

F

Значимость F

Регрессия

4

39,4692

9,867301

0,35006

0,841652584

Остаток

27

761,0497

28,18702

Итого

31

800,5189

     

Таблица 10. Коэффициенты регресси

 

Коэффиц

иенты

Стандартная ошибка

t-статистика

P-Значение

Нижние 95%

Верхние 95%

Y-пересечение

3,561922

7,836107

0,454552

0,65306

-12,516

19,6402

Х1

-0,21277

0,434968

-0,48916

0,62868

-1,1052

0,67971

Х2

-2,64445

4,352113

-0,60762

0,54851

-11,574

6,28535

Х3

2,473815

3,402388

0,727082

0,47343

-4,5073

9,45493

Х4

0,036775

0,058082

0,633148

0,53196

-0,0824

0,15595

Найдена статистика:

Х2наб = nR2=32*0.049305=1,578

Так как

Х2набл=1,578< Х2крит =9,48,

То гипотеза о гетероскедастичности отвергается и модель считается гомоскедастичной.

Критическое значение распределения Хи-квадрат найдено с помощью действий: fx→Статистические→ХИ2ОБР(m), где m – число переменных, входящих в уравнение регрессии (в данном случае 6).

5) Сравните модели между собой выберете лучшую.

Как уже отмечалось ранее по величине Р-значения возможно определять значимость коэффициентов, не находя критическое значение t-статистики. Если значение t-статистики велико, то соответствующее значение вероятности значимости мало – меньше 0,05, и можно считать, что коэффициент регрессии значим. И наоборот, если значение t-статистики мало, соответственно вероятность значимости больше 0,05 – коэффициент считается незначимым.

Для коэффициентов b0, b2, b3, b4 полученных при регрессионном анализе в п.4 значения вероятности близко к 1, следовательно, данные коэффициенты не значимы.

Таким образом, модель выраженная уравнением

У=72,846+0,0031Х1-6,173Х2+5,122Х3-0,18Х4

Выводы

Проанализировав данные зависимости средней продолжительности жизни в странах третьего мира ВВП, темпы прироста населения, темпы прироста рабочей силы и коэффициент младенческой смертности можно сделать ряд выводов:

1. В результате проведенного корреляционного анализа наибольшее

влияние на среднюю продолжительность жизни оказывает ВВП, у остальных факторов наблюдается слабый корреляционный отклик.

2. В ходе регрессионного анализа было получено уравнение зависимости:

У=72,846+0,0031Х1-6,173Х2+5,122Х3-0,18Х4

При этом коэффициент b1=0,0013 показывает, что при увеличении ВВП на 1 млрд. дол. средняя продолжительность жизни увеличивается в среднем на 0,0031 лет, увеличение темпов прироста населения на 1%,. приводит в среднем уменьшению продолжительности жизни на 6,173 лет, увеличение темпов прироста рабочей силы на 1% приводит к увеличению продолжительности жизни на 5,122 лет, а увеличение коэффициента младенческой смертности, на 1% ведет к уменьшению средней продолжительности жизни на 0,18 лет.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Экономика и экономическая теория»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы