Самораспространяющийся высокотемпературный синтез

Обычно в задачу исследований входит определение параметров, наиболее сильно влияющих на СВС-про-цесс и на качество синтезируемых оксидов. Такими основными параметрами оказались: состав исходной смеси (особенно содержание в ней горючего), дис­персность компонентов, размеры и плотность исходных образцов, давление кислорода. Последние два фактора имеют важное значение,особенно для систем с примене

­нием внешнего кислорода.

Из практики СВС-процессов известно, что в гибрид­ных системах типа металл—газ повышение давления обычно приводит к увеличению температуры и ско­рости горения (при отсутствии плавления). В оксидных системах влияние давления оказывалось не всегда одинаковым. При синтезе ниобата и танталата лития, ферритов увеличение давления приводит к по­вышению температуры и росту скорости горения с последующим достижением постоянного значения. Такое влияние давления связано с улучше­нием условий фильтрации кислорода в зону реакции. В опытах по синтезу ВТСП состава YВа2Сu3O7-x давле­ние кислорода варьировалось в пределах 0,1 — 1,0 МПа. При больших давлениях процесс затухал (не иницииро­вался). Такая;ситуация типична для низкокалорийных (слабоэкзотермических) СВС-составов и обусловлена ростом конвективных теплопотерь из горящего образца в окружающий газ при увеличении-давления. В данном случае эффект может быть усилен повышением терми­ческой стойкости пероксида бария с ростом давле­ния П5]. Приведем некоторые значения характери- стик: Р0, = 0,1 МПа, {/г=1,0 мм/с, Гт = 950°С; Р02=1,0 МПа, {/г = 0,2 мм/с, Гт = 780°С. Уменьше­ние ит и Тт с ростом РО2 отражает тенденцию к пога­санию.

Повышение содержания металла в исходной смеси (например, при частичной замене соответствующего оксида на металл) приводит к увеличению тепло­выделения и, как следствие, росту температуры и ско­рости процесса.

Для СВС-систем, реагирующих с участием газа, плотность исходного образца (шихты) всегда является важным параметром процесса. На рис. 3 приведены зависимости 1/г и Тт от относительной плотности (ротн) исходной смеси при синтезе УВа2Сu3О7-х- Опыты проводили на прессованных цилиндрических образцах диаметром 20 мм. Результаты соответствуют представ­лениям, согласно которым при больших ротн возникают фильтрационные затруднения в поставке реагирующего газа в зону горения, что приводит к уменьшению Uг и Тт. Аналогичная зависимость от относительной плотности исходных образцов наблюдалась при синтезе различных ферритов, ниобата и танталата лития.

Типичной для СВС является зависимость Иг и Тт от дисперсности горючего, в данном случае от дисперсности (размера частиц) порошка меди (гСа) при горении систе­мы Y2Oз—ВаO2—Сu—O2, приведенная в табл. 1. При возрастании гСи и (Л, и Тт уменьшаются вследствие того, что необходимое для гетерогенного реагирования время с ростом характерного размера частицы увели­чивается.

При изменении параметров в экспериментах наблю­далась смена режимов горения — от стационарного (устойчивого) до нестационарных (неустойчивых типа автоколебательного и спинового). Обнаружено, что высококачественные продукты синтезируются только в стационарных режимах, и поэтому обеспечение устойчивости горения в этом классе систем является важной практической задачей.

Исследование большого числа оксидных систем пока­зало, что значения температур и скоростей горения невысокие: иг = 0,05—5,00 мм/с и Тт = 750—1500°С. Обычно в СВС-процессах значения (Л и Тт существенно выше (кроме систем металл—водород) [16]. Обращает на себя внимание, что температуры горения, разви­ваемые при СВС оксидов часто такие же, как и при печном синтезе, но процесс в последнем случае длится в десятки и сотни раз дольше. Такая противоречивая на первый взгляд картина связана с тем, что при печном синтезе взаимодействуют уже окисленные вещества, а в СВС образование сложного оксида идет одновремен­но с окислением одного из компонентов, т. е. в СВС имеет место более активная в химическом отношении ситуация. С этой точки зрения СВС является не­сомненно прогрессивным методом получения оксидных материалов.

ОБЩИЙ МЕХАНИЗМ И ТЕОРИЯ СВС

Малоисследованным вопросом является механизм и динамика структурообразования конечных продуктов. Наиболее важное значение имеет получение информации об изменении в волнах СВС микроструктуры образующегося материала (распределение по размерам зерен кристаллитов фазовых составляющих и пор). Решение этой проблемы поможет создать научно-обоснованные приемы повышения прочности синтезируемых материалов и управления фильтрационными характеристиками пористых СВС-продуктов. Для ее решения необходима разработка новых, динамических методов диагностики строения вещества в разных зонах СВС-процесса. Привлекательной задачей является также определение прочностных характеристик зоны горения.

До сих пор не было попыток построить структурно-макрокинетическую теорию СВС-процесса, т.е. рассмотреть совместно процессы горения и структурообразования, что позволило бы глубже понять роль автоволнового процесса в формировании структуры продукта горения и роль структурных превращений в механизме твердопламенного горения.

По-прежнему, важными задачами являются экспериментальная диагностика и математическое моделирование (особенно, трехмерное) неустойчивых процессов горения, построение физико-химических моделей СВС в конкретных, наиболее важных в практическом отношении системах с предвычислением оптимальных условий синтеза, исследование кинетики тепловыделения в порошковых средах при высоких температурах.

РЕАГЕНТЫ И ПРОЦЕССЫ

Реагенты в СВС процессах используются в виде тонкодисперсных порошков, тонких пленок, жидкостей и газов. Наиболее распространены два типа систем: смеси порошков (спрессованные или насыпной плотности) и гибридные системы газ-порошок (или спрессованный агломерат). Известны СВС-процессы и в системах: порошок-жидкость, газ-взвесь, пленка-пленка, газ-газ. Главные требования к структуре исходной системы - обеспечение условий для эффективного взаимодействия реагентов. Шихта в СВС-процессах может находиться в вакууме, на открытом воздухе, в инертном или реагирующем газе под давлением.

В создании СВС системы могут участвовать все химически активные при высоких температурах вещества в качестве реагентов (химические элементы, индивидуальные соединения, многофазные структуры) и инертные вещества в качестве наполнителей или разбавителей.

Наиболее популярные реагенты: H2, B, Al, C, N2, O2, Mg, Ti, Nb, Mo, Si, Ni, Fe, B2O3, TiO2, Cr2O3, MoO3, Fe2O3, NiO и др.

В качестве реагентов используется также минеральное сырье и промышленные отходы.

Условия подбора компонентов СВС-системы:

· экзотермичность взаимодействия реагентов

· образование полезных твердых продуктов

· техническая и экономическая целесообразность.

Горение в СВС-процессах оно получило название "твердое пламя".

Рассмотрим процессы при СВС более подробно и начнем с основного способа инициирования – это локальное инициирование реакции на поверхности системы путем подвода кратковременного теплового импульса (электрическая спираль, электроискровой разряд, лазерный луч и др.) с формированием волны горения и ее распространением по не нагретому исходному веществу. Длительность инициирования обычно намного меньше времени сгорания шихты.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы