Самоорганизация полимеров
Заметим, что формирование устойчивых ассоциатов возможно не только за счет гидрофобных или ионных взаимодействий, но и в результате возникновения межмолекулярных водородных связей, комплексов с переносом заряда, координационных комплексов и т.д.
Формирование организованных макроструктур
Хотя природа взаимодействий, определяющих агрегацию низкомолекулярных амфифилов и их полимерны
х аналогов, идентична, между этими классами соединений есть важное отличие. Специфика макромолекул состоит в том, что они построены из большого числа звеньев N » 103 -105 , которые из-за ковалентной связанности не могут двигаться независимо друг от друга. Данное обстоятельство служит главной причиной повышенной способности полимеров к структурообразованию. Хорошо известно, что два различных полимера А и В с достаточно большими длинами цепей NА и NВ в большинстве случаев не смешиваются друг с другом ни при каких температурах. Даже очень малых отличий в величине ван-дер-ваальсовых взаимодействий звеньев А и В типов порой достаточно для расслоения (сегрегации) компонентов. В этом отношении наиболее ярким примером является расслоение раствора обычного и дейтерированного полиэтилена. Сильная тенденция к сегрегации как раз и связана с аномально низкой энтропией смешении полимеров благодаря чему энергетические факторы, направленные на разделение компонентов, преобладают над тепловым движением, способствующим перемешиванию молекул. В то же время если цепи А и В химически соединены в одну макромолекулу (блочный сополимер), раствор или расплав таких макромолекул не могут расслоиться на две макроскопические фазы. В этом случае стремление к сегрегации блоков А и В способно приводить к микрофазному разделению, результатом которого является формирование мицеллярных или иных типов организованных структур.
Типы сополимеров
Исходя из количества типов мономерных звеньев сополимеры разделяются на двойные и тройные или терполимеры. Около 90% общего производства сополимеров приходится на двойные сополимеры.
Многокомпонентные сополимеры практически не производятся. С точки зрения расположения звеньев сополимеры делят на четыре группы:
а - aaabbb - б - aaaaaa
b
в - abababab - b
b
г - abbabaabbba - b
В блок-сополимерах все звенья одного типа расположены в одной или нескольких частях цепи (а). В зависимости от числа частей цепи, состоящих из одинаковых звеньев, говорят о двух, трех и мультиблочных сополимерах. В привитых сополимерах (б) основная цепь содержит мономерные звенья одного типа, ветви основной цепи -звенья другого типа. В чередующихся сополимерах (в) звенья двух типов регулярно чередуются. В статистических сополимерах (г) звенья двух типов расположены в цепи хаотически, именно они составляют основу промышленного производства сополимеров. Механизм сополимеризации, за исключением одного случая, не отличается от механизма полимеризации. Статистические и привитые сополимеры наиболее просто можно получить методом радикальной полимеризации. Блок-сополимеры получают в промышленности методом анионной полимеризации, а чередующиеся сополимеры - лишь методами так называемой комплексно-радикальной сополимеризации [1]. Суть отвечающего ей механизма состоит в том, что разные мономеры по тем или иным причинам образуют комплекс, который и участвует в процессе полимеризации как единая кинетическая единица. В данном случае разные мономеры сначала выстраиваются попарно, а затем эти пары образуют цепь.
Блок-сополимеры
В настоящее время синтезированы блочные сополимеры с самой различной архитектурой. Мультиблочные макромолекулы могут иметь регулярное или случайное чередование блоков. Получены градиентные сополимеры, в которых распределение блоков плавно меняться от одного конца цепи до другого. Наряду с линейными известны также гребнеобразные сополимеры: к их основной цепи, построенной из однотипных звеньев, присоединены в виде зубцов гребенки блоки, состоящие из звеньев другого типа. Боковые блоки могут содержать различные функциональные группы, способные к ассоциации за счет диполь-дипольных взаимодействий, образования водородных связей и т.д. весьма интересные картины самоорганизации демонстрируют гребнеобразные комплексы, возникающие в результате нековалентного связывания молекул поверхностно-активных веществ с полимерными цепями. На рис. представлен один из примеров такого комплекса, в котором молекулы пентадецилфенола присоединены водородной связью к атому азота пиридиновых групп поли-4-винилперидина. С формальной точки зрения подобный комплекс является привитым сополимером, в состав которого входят группы с конкурентным взаимодействием. Воспрепятствовать тенденции к макроскопической сегрегации в системе двух несмешивающихся полимеров А и В можно также за счет создания поперечных ковалентных связей между однотипными цепями.
На практике образование такого материала - взаимопроникающей полимерной сетки (ВПС) - достигается в том случае, если оба полимера синтезируют при химическом сшивании в присутствии друг друга. В результате получаются два сеточных каркаса, между которыми нет химических связей, но которые соединены в единую конструкцию за счет топологической связи (подобно катенанам - кольцевым структурам, физически сцепленным друг с другом). Поскольку сетки неспособны разделиться, их конфликт интересов частично устраняется путем микрофазного расслоения.
Заметим, что взаимопроникающие сетки могут быть построены и на основе ионсодержащих полимеров.
Формы самоорганизации. Образование мицелл низкомолекулярных амфифилов
Чтобы лучше понять процессы самоорганизации полимеров, рассмотрим более подробно, как протекает агрегация обычных амфифилов в водных растворах.
Типичным представителем лиофильных дисперсных систем являются мицеллярные дисперсии ПАВ, в которых на ряду с отдельными молекулами присутствуют коллоидные частицы (мицеллы) - ассоциаты молекул ПАВ с достаточно большой степенью ассоциации (число молекул в мицелле) m = 20-100 и более. При образовании таких мицелл в полярном растворителе (воде) углеводородные цепи молекул ПАВ объединяются в компактные углеводородное ядро, а гидротированные полярные группы, обращенные в сторону водной фазы, образуют гидрофильную оболочку. Благодаря гидрофильности наружной оболочки, экранирующей углеводородное ядро от контакта с водой, поверхностное натяжение на границе мицеллы-среда оказывается сниженным, что обуславливает термодинамическую устойчивость мицеллярных систем относительно макрофазы ПАВ. При низкой концентрации раствора подавляющее число амфифильных молекул находится в неассоциированном состоянии (в виде мономеров). Если концентрация растворенного вещества увеличивается и достигает некоторого значения, называемого критической концентрацией мицеллообразования, в системе возникают мицеллярные агрегаты различного размера, форма которых близка к сферической. При постоянной температуре мицеллярная фаза находится в термодинамическом равновесии с раствором мономеров. Рост концентрации сдвигает равновесие в сторону образования более крупных мицелл. При этом сферические агрегаты с радиусом ~1 нм могут превращаться в эллипсоидальные, а затем и в цилиндрические агрегаты с радиусом ~10 нм. Последние напоминают слегка изогнутые трубки, в которых углеводородные цепи размещаются внутри цилиндрических оболочек, построенных из полярных частей молекул. Дальнейший рост концентрации приводит к формированию так называемой гексагональной фазы - частично упорядоченной структуры с приблизительно гексагональной упаковкой параллельно ориентированных цилиндров, пространство между которыми заполнено водой. При еще более высокой концентрации амфифилов эта структура трансформируется в ламеллярную фазу, напоминающую слоеный пирог, в котором слои воды перемежаются с двойными слоями амфифильных молекул. Поскольку по мере уменьшения содержания воды диэлектрическая проницаемость среды e уменьшается (для жидкой воды e » 81) и приближается к значению, характерному для жидкого амфифила, в системе начинают преобладать силы диполь-дипольного притяжения между недиссоциированными полярными группами амфифильных молекул. Поэтому дальнейшее уменьшение содержания воды ведет к перестройке структур в обратном направлении: ламеллярная фаза преобразуется в инвертированные цилиндры, а те в свою очередь – в инвертированные мицеллы.