Самоорганизация полимеров
Полиморфных переходы
О взаимных превращениях структур различного типа говорят как о полиморфных переходах. Такой термин, более привычный для кристаллохимиков, употребляется не случайно. Действительно, одной из замечательных особенностей рассмотренных систем является их жидкокристалличность. Как известно, жидкие кристаллы (или мезофазы) представляют собой вещества, которые имеют свойс
тва и жидкостей и твердых тел. С одной стороны, они обладают текучестью, а с другой - молекулы такого вещества упорядочены наподобие кристаллической решетки. Для жидких кристаллов часто характерна анизотропия механических, электрических, магнитных и оптических свойств, в частности наличие двойного лучепреломления. Именно такой ярко выраженной анизотропией свойств обладают гексагональная и ламеллярная мезофазы. Заметим также, что способы описания и физические методы исследования мезофаз аналогичны тем, которые используются в кристаллографии. Так, о полиморфных переходах в амфифильных системах обычно судят используя рентгеноструктурный анализ или метод рассеяния нейтронов.
Структурное разнообразие самоорганизующихся полимеров
Все названные классические типы структур возможны и для самоорганизующихся полимеров. Для полимерных систем структурное разнообразие (полиморфизм) даже шире, чем в случае низкомолекулярных амфифилов. Это определяется как большим химическим разнообразием макромолекул, так и более высокой стабильностью формирующихся суперструктур, что обусловлено уже упоминавшимися энтропийными причинами. В частности, при микрофазном разделении блочных АВ-сополимеров гораздо легче, чем для низкомолекулярных соединений, удается наблюдать другие структурные мотивы - промежуточные между ламеллями и отдельными мицеллами.
Надмолекулярные структуры. Сплошными линиями обозначены стабильные состояния: L — ламеллярная фаза, G — гироидная, С — колончатая, S — кубическая мезофаза ; штриховыми — метастабильные: PL — перфорированная ламеллярная, D — двойная алмазная.
Объемоцентрированной кубической решетки (ОЦК)
Одна из таких периодически организованных трехмерных структур представляет собой кубическую мезофазу с элементами симметрии объемоцентрированной кубической (ОЦК) решетки. В этом случае блоки типа А образуют сферические мицеллоподобные домены с размером ~10 нм, которые составляют каркас структуры, а блоки типа, заполняют междоменное пространство. Изменение длины блоков позволяет регулировать размеры микродоменов и период ОЦК-структуры. Такая нанометровая морфология характерна не только для расплавов блочных сополимеров с нейтральными блоками, но и для слабо заряженных полиэлектролитов в водных растворах, когда имеется конкуренция между тенденцией к сегрегации незаряженных звеньев на малых масштабах и дальнодействующим кулоновским отталкиванием, которое стабилизирует регулярную микродоменную структуру. По ряду формальных признаков подобные системы эквивалентны обычным кристаллам (только их решетка не является жесткой и построена не из атомов, а из микродоменов, включающих в себя десятки или сотни мономерных звеньев). Поэтому, говоря об образовании таких систем, иногда используют термин «слабая суперкристаллизация».
Биконтинуальная двойная алмазная структура
Другим примером высокоорганизованной суперструктуры, которая наблюдается как для низкомолекулярных амфифилов, так и для некоторых блочных сополимеров, является биконтинуальная двойная алмазная структура. Ее можно представить в виде двух взаимопроникающих, но не связанных между собой топологически непрерывных сеток, которые регулярно заполняют пространство. Сетки построены из притягивающихся групп типа А и находятся в окружении раствора или расплава, где преобладают группы типа В.
Обе сетки идентичны друг другу и имеют тетраэдрическое строение, такое же, как у обычной алмазной решетки. Заметим, что в отличие от кубической структуры, которая непрерывна по одной из фаз и дискретна по другой, данная структура является биконтинуальной, то есть непрерывной по обеим фазам.
Гироидная структура
В недавно выполненных экспериментах для монодисперсных блочных сополимеров удалось доказать наличие еще одной сложной биконтинуальной суперструктуры, называемой гироидной. Подобно двойной алмазной, она состоит из двух идентичных взаимопроникающих сеток, однако в данном случае из каждого узла сетки исходит не четыре, а три рукава. Десять таких рукавов образуют замкнутую петлю.
Полимерные фракталы
Все рассмотренные мезофазы обладают периодичностью структуры и могут быть охарактеризованы той или иной пространственной группой симметрии. В мире полимеров встречаются, однако, и такие объекты, при описании которых обычных геометрических понятий становится недостаточно. Эти объекты имеют определенную внутреннюю организацию, но не обладают периодичностью структуры. Подобные объекты называют фрактальными, а для их описания служит особый язык фрактальной геометрии. Примером полимерных фракталов являются случайно разветвленные макромолекулы, которые синтезируют из трехфункциональных мономеров. Фрактальные агрегаты возникают и при нековалентном связывании молекул иономеров с сильно ассоциирующими группами. Так, в системе не слишком длинных цепочек, каждая из которых имеет одну концевую ионную пару, возможно образование весьма причудливых агрегатов, напоминающих кораллы. Ветви этого «коралла» представляют собой изогнутые цилиндры, сердцевина которых построена из ассоциатов ионных пар (мультиплетов), а их внешняя оболочка - из неполярных групп. Если сильно притягивающиеся группы расположены на обоих концах цепи (такую макромолекулу называют телехеликом), возникает сетчатая структура, в которой сферические мультиплеты играют роль узлов сетки, а сами узлы соединены неполярными участками цепей. В отличие от химических сеток (типа вулканизированного каучука) ассоциативная сетка обладает свойством термообратимости - она способна разрушаться при небольшом повышении температуры и вновь возникать, когда температура понижается. При более сложном распределении сильно ассоциирующих групп в цепи возможно образование разного рода фрактальных агрегатов с сеточной структурой.
1.2. Самоорганизация в живой природе
Говоря, о самоорганизации полимеров созданных природой, необходимо отметить, что природа и эволюция отобрали такие химические структуры, которые являются наиболее рациональными и гармоничными.
Так, одинаковые белковые молекулы, взаимодействуя между собой за счет слабых сил, образуют геометрически регулярные структуры (спирали, кольца, гексагональные формы), которые упаковываются в плоские слои или трубки. Похожим образом можно реконструировать in vitro вирус табачной мозаики, просто смешав в растворе вирусные белок и РНК: сначала возникают белковые структуры в виде двойных колец, а затем они “нанизываются” на молекулу РНК. Так постепенно строится вирусная частица — длинный стержень, в котором спирально закрученная РНК заключена в цилиндр из одинаковых белковых молекул.
Другие рефераты на тему «Химия»:
- Особенности сорбционного извлечения палладия (II) из хлоридных растворов волокнами ЦМ-А2, Мтилон-Т и ВАГ
- Азот и его соединения
- Количественный эмиссионный спектральный анализ, его аппаратура. Пламенная фотометрия
- Синтез глицерина
- Научные основы технологии и оборудования гранулирования активных масс и формования положительных электродов литиевых источников тока