Самоорганизация ион-проводящих структур при протекании электрохимических процессов на фазовых переходах, включающих серосодержащие компоненты
- впервые рассчитаны аррениусовские температурные зависимости удельных электропроводностей прямых контактов Li/Sb2S;, соответствующие линейным и квадратичным участкам катодных ВАХ. Показано, что появление области пространственного заряда в переходном слое интерфазы LiSbS2 снижает её удельную электропроводность на 1-1,5 порядка. При этом наблюдается двукратное снижение энергии активации электроп
роводности;
- впервые исследовано электрохимическое поведение границ
Li/LhSz при x=0,013-f0,054; у=0,373-г0,416; г=0,530ч-0,605 и x+y+z=l
С помощью снятия стационарных гальваностатических ВАХ и переменнотоковых измерений. Определены коэффициенты диффузии лития в LixSbySz, равные: DLi- 5,7 104- 6,010"9см2/с. Энергии активации Лс = 34,0-г41,8 кДж возрастают с мольной долей лития х в литиевых тиостибнитах;
- впервые показано тормозящее влияние областей пространственного заряда на катодные и анодные процессы в системах прямого контакта и качественное согласие моделей, используемых для интерпретации экспериментальных данных для границы прямого контакта Li/Sb2Sx и границ прямого контакта Lz;
- впервые получен новые литийпроводящие твердые электролиты путем твердофазного химического синтеза и электрохимического синтеза методом прямого контакта анода и катода, имеющие электропроводность 10"4-М0"3 Ом'см"1 в температурном интервале 283-=-323 К, с числами переноса (0,91-0,95);
- показано, что химически синтезированные литийтиостибнитные фазы LixSbySz значительно более дефектны по сравнению с интерфазой прямого контакта LlSbS2, что приводит к их повышенной удельной электропроводности и ускорению ионного транспорта.
Все вышеизложенное дает основание считать совокупность проведенных исследований существенным вкладом в электрохимию твердофазных систем, заключающимся в установлении закономерностей кинетики и механизма электрохимических процессов в переходных слоях, образующихся на межфазных границах, и разработке на этой основе общего подхода к созданию различных классов твердотельных электрохимических преобразователей энергии и информации.
На защиту выносятся:
1 Теоретические разработки по механизму и закономерностям переноса заряда в структурах металл / переходный слой интерфазы.
2. Закономерности влияния внешних и внутренних факторов на кинетику переноса заряда в структурах литий /переходный слой интерфазы.
3. Способы определения параметров ионного и электронного транспорта в переходных слоях интерфазы.
4. Принципы создания твердофазных электрохимических преобразователей энергии и информации.
5. Гипотеза о самоорганизации переходных ион-проводящих структур при протекании электрохимических и химических процессов на фазовых границах. Определяющую роль матричных структур в твердофазных электродных реакциях.
Существование инжекции основных носителей заряда в электродную матрицу делает возможным функционирование как известных источников тока, (Li /L-ТЭЛ / TiS2), так и новых, разработанных автором типов пре¬образователей энергии (Ы/ЫХ / SbX), а также сенсорных систем для определения газов, например, сероводорода: Ni.NiO /Na+At203 /Sb2S3.
Результаты работы и выводы на их основе имеют значение как для теоретической электрохимии, так и для решения прикладных задач, связанных с созданием приборов твердотельной микроэлектроники.
Практическое значение работы заключается в следующем:
- сформулированный принцип образования переходных ион-проводящих слоев в электродных твердофазных реакциях является критерием выбора компонентов электрохимических систем для реализации на их основе преобразователей энергии и информации различного функционального назначения.
При этом может быть достигнута высокая разрешающая способность (107 + 109 моль/см3);
- показана связь участков потенциодинамических кривых с фазовым составом переходного слоя. Определена зависимость состава интерфазы от условий получения;
- получены новые литийпроводящие твердые электролиты путем твердофазного химического и электрохимического синтеза методом прямого контакта анода и катода.
Апробация результатов работы.
Основные результаты диссертационного исследования были доложены на следующих научно-технических конференциях, симпозиумах и совещаниях: II Совещании по литиевым ХИТ (Саратов, 1992), Международном симпозиуме «Новые ХИТ» (Киев, 1995), Региональной конференции «Проблемы экологической безопасности Нижнего Поволжья в связи с разработкой и эксплуатацией нефтегазовых месторождений с высоким содержанием сероводорода» (Саратов, 1996; Астрахань, 1997), XI, XII, XIII конференциях по физической химии и электрохимии расплавленных и твердых электролитов (Екатеринбург, 1998; 2001,2004), Международная конференция «Защита - 98» (Санкт-Петербург, 1998), XII - th International conference «Solid - stat Ionics» (Greece, 1999), Всероссийской конференции «Сенсор 2000» (Санкт-Петербург, 2000), VII Международном Фрумкинском симпозиум «Фундаментальная электрохимия и электрохимическая технология» (Москва, 2000), Международной конференции «Высшее профессиональное заочное образование на железнодорожном транспорте: настоящее и будущее» (Москва, 2001), IV, VI,VII Международных совещаниях «Фундаментальные проблемы ионики твердого тела» (Черноголовка, 1997, 2002, 2004), VII-VIII Международных конференциях «Фундаментальные проблемы преобразования энергии в литиевых электрохимиче-ских системах» (Саратов, 2002, Екатеринбург, 2004), The 10 - th Interna-tional Symposium on olfaction and Electronic Nose (Riga, 2003), IV Междуна¬родной научной конференции «Химия твердого тела и современные микро- и нанотехнологии» (Кисловодск, 2004).
Личный вклад соискателя. Все основополагающие теоретические результаты, представленные в диссертации, и основная часть экспериментальных исследований получены автором лично. Личный вклад состоит в формировании научного направления и постановке задач, разработке экспериментальных методик и методов обработки экспериментальных данных и обобщении полученных результатов. Автор искренне признателен и выражает благодарность своим научным консультантам - профессорам A.M. Михайловой и Ю.В. Серянову, под руководством и непосредственном участии которых была выполнена значительная часть исследований.
Публикации.
Основной материал диссертации изложен в 43 публикациях, в том числе 14 статьях и 25 докладах, опубликованных в период с 1990 по 2004 гг. Результаты проведенной работы получили практическое воплощение и экспериментальную проверку при испытании лабораторных макетов твердотельных ионных преобразователей энергии, химических сенсоров, интеграторов. Эти устройства защищены 3 патентами и 1 свидетельством на полезную модель.
Структура и объем работы.
Диссертация состоит из введения, пяти глав, выводов и списка цитируемой литературы, изложена на 252 стр. печатного текста, включает 94 рисунка и 22 таблицы. Список цитируемой литературы содержит 246 источников.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении содержится обоснование актуальности работы, сформулированы цели и задачи исследования и дана общая характеристика работы, где обосновываются научная новизна и практическая ценность результатов работы, приводятся основные положения, выносимые на защиту.