Подземная гидромеханика

где .

Если сделать замену , то дифференциальное уравнение неустановившейся фильтрации газа по двучленному закону примет следующий вид:

. (14)

Аналитическое решение уравнения (14) наталкив

ается на значительные трудности, однако численное решение для обычных в подземной гидромеханике начальных и граничных условий не представляет затруднений.

1.2 Линеаризация уравнения Лейбензона и основное решение линеаризованного уравнения

Если заменить нелинейное дифференциальное уравнение (8) линейным, т. е. линеаризовать его, то оно упростится - для линейного уравнения существуют точные аналитические решения. Ясно, что эти точные решения линеаризованного уравнения будут приближенными для нелинейного. Оценить погрешность решения, которая возникает при замене точного уравнения линеаризованным, можно, например, сравнивая приближенное решение с решением на ЭВМ точного уравнения.

Были предложены различные способы линеаризации уравнения (8). Если рассматривается плоскорадиальный приток к скважине, то, как известно из теории установившейся фильтрации газа воронка депрессии очень крутая, и в большей части пласта давление мало отличается от контурного. На этом основании Леибензон предложил заменить переменное давление p в коэффициенте уравнения (8) на постоянное давление pк, равное начальному давлению в пласте. Тогда, обозначив получим вместо уравнения (8) уравнение

(15)

которое является линейным уравнением пьезопроводностиотносительно функции р2, гдеχ-константа, аналогичная коэффициенту пьезопроводности. Такой способ линеаризации, когда переменный коэффициент χ в уравнении при различных значениях давления принимается константой, называется линеаризацией поЛей6ензону. В дальнейшем различными авторами были предложены уточнения к линеаризации по Лейбензону. Так. И. А. Чарный предложил свести уравнение (8) к линейному заменой переменного давления в коэффициентена значение

pср=pmin+0,7(pmax-pmin),

где pmах и pmin - максимальное и минимальное давления в газовой залежи на расчетный период.

Используем линеаризованноеуравнение (15) для решения конкретной задачи о притоке газа в скважину бесконечно малого радиуса (точечный сток), расположенную в бесконечно протяженном пласте с постоянной толщиной h. В начальный момент времени пласт невозмущен, т.е. давление во всем пласте постоянно и равно pk. С этого момента начинается отбор газа с постоянным дебитом Qат. Нужно найти изменение давления по пласту с течением времени p(r, t).

Для плоскорадиальной фильтрации газа (15) запишется следующим образом:

(16)

Проинтегрировав уравнение (16) при начальномусловии

p2 = pk2 при t =0, 0 < r < ∞ (17)

и при граничном условии в удаленных точках

р2 = рk2 при r = ∞, t > 0. (18)

Выведем условие для давленияна забое скважины.Записав выражение для массового дебита исходя из закона Дарси в дифференциальной формедля плоскорадиальной фильтрации:

И использовав равенства

а так же сокративна рат, получим:

Из этого соотношения можно выразить условие на стенке газовой скважины бесконечно малого радиуса:

при r=0. (19)

Таким образом, для решения поставленной задачи уравнение (16) должно быть проинтегрировано при условиях (17), (18), и (19).

Полученные выражения для совершенного газа аналогичны соотношениям для упругой жидкости, только давление входит в квадрате:

p2 = pk2 при t = 0, 0 < r < ∞

р2 = рk2 при r = ∞, t > 0

при r = 0

Решение лиеаризованного уравнения Лейбензона для газа получим по основной формуле упругого режима для упругой жидкости с учетом для газа и коэффициента, аналогичных коэффициенту пьезопроводности и коэффициенту для жидкости:

(20)

Для малыхзначений аргумента в соответствии можно заменить интегральную показательную функцию логарифмической

(21)

Решения (20)-(21) являются приближенными, так как получены в результате интегрирования линеаризованного уравнения (16), а не точного (6).

Формулы (20) и (21) определяют (при фиксированных значениях времени t распределение давления вокруг газовой скважины, работающей с постоянным дебитом с момента t = 0. Эти депрессионные кривые имеют такой же характер, как при установившейся фильтрации очень крутые вблизи скважины (рис.1,а). Если задать значение r можно найти изменение давления в данной точке с течением времени. Можно найти изменение давленияна забое (при r=rc) после начала работы скважины (рис.1,б):

(22)

Кривые распределения давления по пласту при неустановившемся притоке газа к скважине в разные моменты времени (а) и динамика давлений в фиксированных точках пласта (б)

а

p

pк

Рис. 1.

Г.И.Баренблатт, применяя анализ размерностей, показал, что нелинейное уравнение Лейбензона при определенных начальных и граничных условиях имеет точное решение, которое может служить эталоном для сравнения с ним приближенных решений.

Для его получения рассматривается задача о нестационарном плоскорадиальном притоке газа с постоянным дебитом к скважине в бесконечном пласте. Необходимо проинтегрировать нелинейное уравнение Лейбензона

(23)

При начальных граничных условиях

p2 = pk2 при t =0, 0 < r < ∞

Страница:  1  2  3  4  5 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы