Работа редактора с формулами

или

т.е.

откуда x1 = 7, у1 = 4, х2 = - 4, у2 = -7.

можно расположить так:

Решая полученную систему, имеем

или т.е. ,

откуда x1 = 7, у1 = 4, х2 = - 4, у2 = -7.

Возможна и такая запись:

<=> <=> <=> (x1 = 7, у1 = 4)

(х2 = - 4, у2 = -7)

Пример 10. Расположение формул одна в подбор другой

Например, в тексте

Прямоугольные и сферические координаты точки связаны соотно­шениями

x = q sin Θ cos φ

y = q sin φ cos Θ

z = q cos Θ .

правильнее записать все формулы в строку:

x = qsinΘcosφ , y = qsinφcosΘ , z = qcosΘ .

Пример 11. Расположение формул одна в подбор к другой

Например, текст

Координаты центра тяжести дуги находят по формулам

(1)

(2)

(3)

необходимо расположить следующим образом:

Координаты центра тяжести дуги находят по формулам

(1)

Пример 12. Отказ от элементарных числовых выкладок

Вместо ряда формул

следует записать:

.

Пример 13. Замена громоздких выражений символами

Текст

Докажем, что

Оценим выражение

Так как > 0, то 0 < < 0 < <

Можно записать так:

Докажем, что A1A2 = α , гдеA1 = A2 =

Оценим выражение A1A2 = α.

Так какcosα / ( 1 – sin α ) > 0, то 0< A1 < π / 2 и 0< A2 < π / 2 .

Пример 14. Преобразование текста с целью компактного размещения формул

Текст

Умножив 1-ю строку матрицы

на 3-ю и вычитая ее из 2-ой строки, получаем

Переставив теперь 2-й и 3-й столбцы, имеем

можно более компактно записать так:

Выполним над матрицей следующие преобразования:

Мы умножили 1-ю строку на 3-ю и вычли ее из 2-й, а затем переставили 2-й и 3-й столбцы.

Пример 15. Перевод текста в таблицу

Текст

1. Если С=0, то уравнение принимает вид Ах + Ву = 0. Это уравнение прямой, проходящей через начало координат.

2. Если А=0, то уравнение имеет вид у = -С / В или у = b и выражает уравнение прямой, параллельной оси O x.

3. Если В=0, то уравнение имеет вид x = - C / А или x = а и выражает уравнение прямой, параллельной оси O y.

4. Если А=С=0, то уравнение примет вид у = 0. Это – уравнение оси O x.

5. Если В=С=0, то уравнение примет вид x= 0. Это – уравнение оси О y.

можно перевести в следующую таблицу

№ п/п

Значения коэффициентов

Уравнение прямой

Положение прямой

1.

С=0

А x + В y = 0

Проходит через начало координат

2.

А=0

y = -С/В = b

Параллельна оси O x

3.

В=0

x = -С/А = а

Параллельна оси О у

4.

А = С = 0

у=0

Совпадает с осью O x

5.

В = С = 0

x=0

Совпадает с осью O y

Пример 16. Перенос ссылок на форму из текста в формулы

Пример 17. Использование современной символики

Текст

Если p принадлежит α, то α и p параллельны. Пусть р не принадлежит α. Проведем плоскость β, которая содержит линию пересечения прямых b и q. Так как q принадлежит α (по условию) и q принадлежит β (по построению), то q есть прямая пересечения плоскостей α и β. Допустим, что теорема неверна, т. e. р не параллельна α. Тогда существует точка С пересечения прямой р с плоскостью α.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Журналистика, издательское дело и СМИ»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы