Работа редактора с формулами

Сделать этот текст более легким для чтения и восприятия может только строгое соблюдение правил и условий набора и верстки. Особое значение приобретает однотипность оформления и набора одинаковых элементов, ритмичность и осмысленность в построении каждой формулы, четкая обособленность отдельных формульных выражений. Сложность работы с этим видом текста заключается и в том что отдельные элементы

формул в зависимости от расположения, размера и начертания одних и тех же наборных знаков могут приобретать разные смысловые значения.

Поэтому разметка и оформление формульных текстов требует не только овладения правилами набора и верстки формул, но и специальных знаний, которые приобретаются постепенно, в процессе работы над этим видом текста. В подготовке и разметке оригинала формул значительна роль редактора и корректора-вычитчика. Именно им надлежит проверить правильность всех формул с автором, разместить эти формулы в тексте так, чтобы это было удобно и для их восприятия, и для набора и печати, разметить часть шрифтов в формулах - указать, что набрать курсивом, что - прописным и т.д.

Разметка формульных текстов делается в дубликатах. Прежде чем приступить к разметке, технический редактор должен проверить, достаточно ли четко и разборчиво написаны формулы.

Особое внимание следует обратить на четкость и понятность взаимного расположения условных обозначений, символов, знаков, степеней и индексов. Очень четко должно быть выявлено подразделение на ярусы в многострочной части формулы. Тщательно и точно вырисованы знаки связей и положение элементов по отношению к ним в структурных формулах.

Одновременно определяется, все ли формулы могут быть набраны. Те, которые нельзя набрать, изымаются из дубликатов и передаются в графическое бюро для изготовления репродукционных оригиналов. Готовые оригиналы также тщательно проверяются.

Во всех случаях сомнений при переносах или необходимости перестройки формул следует обращаться за консультацией к автору.

В данной работе предпринята попытка показать некоторые примеры расположения и оформления математических формул в учебной литературе.

2. Основная часть. Математические формулы

Математической формулой называется символическая запись какого-либо утверждения (предложения, суждения). Формулы помогают заменить в тексте сложные словесные выкладки, различные операции с количественными показателями. Для этого используют специальные условные обозначения, называемые символами, которые можно разбить на три группы:

1) условные буквенные обозначения математических и физических величин;

2) условные обозначения единиц величин;

3) математические знаки.

Математические формулы используются в научной, научно-практической, производственной и учебной литературе. Причем основная сложность работы с данным видом текста состоит в том, что применяется он в литературе, предназначенной для читателей и пользователей с различной степенью подготовки. Так, например, для научных сотрудников, людей с высшим техническим образованием и студентов технических ВУЗов допустим ряд сложных математических выкладок без подробного описания всех математических действий. Для школьников в учебной литературе такой прием недопустим, так как их подготовка еще слаба, и сложные выкладки без подробных пояснений будут для них непонятны.

В книгах должны быть использованы символы, утвержденные государственными стандартами, а если таковых нет, то — общепринятые в данной отрасли науки или производства.

В качестве условных буквенных обозначений используют не менее ста букв русского латинского, греческого и готического алфавитов. Однако во всех областях математики, физики, техники и некоторых других науках употребляются десятки тысяч понятий, буквенные обозначения которых должны различаться между собой. Естественно, что некоторые однотипные условные буквенные обозначения с равным правом используют в различных отраслях.

Многие величины, необходимые только в одной отрасли науки, должны иметь свои собственные обозначения, отличающиеся от обозначений сходных величин в других отраслях науки. Чтобы индивидуализировать символ, применяют индексы. К основному буквенному обозначению добавляют значок, указывающий на частное значение.

2.1 Расположение формул

2.1.1 Формулы, выключенные отдельными строками

Наиболее важные формулы, а также длинные и громоздкие формулы, содержащие крупнокегельные знаки суммирования произведения, дифференцирования интегрирования и г. п., выключают в отдельные строки. Таким же образом располагают и все нумерованные формулы. При этом возможна выключка как на середину, так и в левый (иногда в правый) край строки или с небольшой втяжкой

2.1.2 Формулы, помещенные в подбор одна к другой

Для экономии места несколько коротких однотипных формул, выделенных из текста, можно помещать в одной строке, а не одну под другой (см. 2.8.5).

2.1.3 Формулы, помещенные внутри строк текста

Внутри строк текста размещают прежде всего небольшие и несложные формулы, не имеющие самостоятельного значения. Но и во многих других случаях расположение формул отдельными строками не вызывается необходимостью, и при размещении их в подбор с текстом можно добиться значительной экономии бумаги и сократить объем ручной доработки набранного на машине текста или объем монтажа при фотонаборе (см. 2.8.4).

2.2. Нумерация формул

Нумеровать следует наиболее важные формулы, на которые имеются ссылки в последующем тексте. Не рекомендуется, как правило, нумеровать формулы, на которые ссылок в тексте нет.

2.2.2 Форма номера

Порядковые номера формул обозначают арабскими цифрами в круглых скобках у правого края полосы без отточия от формулы к ее номеру. Применяются арабские цифры со строчными буквами (2.2.10) и буквами или звездочками (2.2.11).

2.2.3 Место номера, не умещающегося в строке формулы

Его располагают в следующей строке ниже формулы.

2.2.4 Место номера при переносе формулы

Его располагают на уровне последней строки.

(Приложение 1. Пример 1)

2.2.5 Место номера формулы в рамке

Его располагают вне рамки в правый край против основной строки формулы.

2.2.6 Место номера формулы-дроби

Номер выключают посередине основной горизонтальной черты формулы.

2.2.7 Нумерация небольших формул, помещенных в одной строке

Несколько небольших формул, составляющих единую группу, помещают в одну строку и объединяют одним номером.

2.2.8 Нумерация группы формул, расположенных отдельными строками

Ставят справа от этой группы фигурные скобки, охватывающие по высоте все формулы, — парантез. Острие парантеза находится в середине группы формул по высоте и обращено в сторону номера, помещаемого в скобке против острия в правом крае полосы.

(Приложение 1. Пример 2)

2.2.9 Нумерация группы формул — системы уравнений

В математической литературе парантез допускается ставить слева от группы формул — системы уравнений, а номер помещать против сере­дины группы формул. (Приложение 1. Пример 3)

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Журналистика, издательское дело и СМИ»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы