Физико-химические свойства золошлаковых отходов мусоросжигательных заводов
Потери при прокаливании (П.п.п) золы включают не только выгорание органических остатков (углерода), но и удаление воды при дегидратации Са(ОН)2 и алюмосиликатов, удаление С02 из карбоната кальция. Повышенное содержание в золе (по сравнению со шлаком) СаО, MgO, К20 и Na20 и пониженное Si02 увеличивает ее основность (однако она остается кислой) и гидрохимическую активность; в отдельных случаях зо
ла может быть отнесена к активным материалам.
В процессе горения отходов соединения тяжелых металлов испаряются при температурах 850 — 1000С и с отходящими газами покидают печь вместе с частицами летучей золы. В экономайзерной части котлоагрегата температура отходящих газов понижается до 200 — 300°С, что приводит к оседанию большей части соединений тяжелых металлов на частицы летучей золы [1].
В настоящее время на большинстве мусоросжигательных заводов мира установлены сложные системы очистки отходящих газов, включающие от двух до пяти стадий (обеспыливание, абсорбция, адсорбция, денитрифи-кация, выделение диоксинов.
Степень опасности отходов мусоросжигания обусловлена как наличием соединений класса полихлорированных бифенилов, типа ПХДД и ПХДФ, так и подвижных форм тяжелых металлов (главным образом свинца, кадмия, цинка, меди и хрома), способных мигрировать в природные среды (почву, поверхностные и фунтовые воды) [3]. Исследования распределения металлов показали, что 78% кадмия, 43% свинца и 38 % цинка, поступивших с ТБО на сжигание, концентрируются на частицах золы [2]. Образующиеся в результате сжигания отходов летучая зола и шлак представляют собой сложные минеральные композиции, имеющие оксидную основу, содержание основных компонентов которых изменяется в широких пределах.
Результаты экспериментов по выщелачиванию металлов из зол МСЗ показали, что наибольшая миграционная активность элементов наблюдалась при контакте отходов с кислыми и слабокислыми выщелачивающими растворами [4]. В водную среду из золы в первую очередь мигрируют легко растворимые хлориды Na и К. В меньшей степени водной миграции подвержены Са и А1. Из токсичных металлов в водных вытяжках присутствуют Pb, Zn, Си, Сг. 0,2 мм (11%); 0,1 - 0,16 мм (17%); 0,063 - ОД мм (1.8%); 0,05 — 0,063 мм (7%); <0,05мм (27%). Преобладают частицы размером 0,02 — 0,04 мм [5].
Абразивность летучей золы зависит от внешних форм ее частиц, а также их прочности. Внешняя форма и прочность частиц зависят от минералогического и химического состава золы, а минералогический состав определяется содержанием Si02 и АЮ3.
Объектами настоящего исследования являются зольные остатки систем газоочистки МСЗ N° 2 и содержащаяся в шлаке колосниковая зола. Зольными остатками систем газоочистки являются смесь летучей золы с известью и активированным углем. Колосниковой (или донной) золой является фракция в шлаке с размером частиц менее 0,25 мм. Отбор проб летучей золы МСЗ № 2 в данной работе осуществляли из бункера-накопителя. Было отобрано пять проб летучей золы. Пробы были многоточечными (20 точек) и случайными как по времени дня, так и по месту сосредоточения отхода.
Поступившие в лабораторию 12 смешанных проб (каждая массой около 6 кг) рассыпали слоем толщиной около 1 — 2 см на листах фильтровальной бумаги и сушили до воздушно-сухого состояния в течение 2 сут. После высушивания проводили операцию квартования. Слой пробы делили на квадраты площадью 8—10 смг и отбирали через 1 в шахматном порядке. Половину пробы отбрасывали. Оставшуюся часть вновь рассыпали слоем около I см, делили на квадраты площадью 6 — 8 см2, затем отбирали через 1 в шахматном порядке, половину отбрасывали. Эту операцию повторяли до тех пор, пока масса оставшейся золы в каждой пробе не составляла около 500 г. После чего пробу помещали во вращающийся барабан для перемешивания в течение 20 мин. Перемешанную пробу хранили в пластиковых или стеклянных емкостях с плотно закрытой крышкой.
До настоящего времени нет утвержденных методик определения химического состава отходов, в частности зол мусоросжигания. В данной работе при определении токсичных элементов, входящих в состав отхода, а также мигрирующих в окружающую природную среду, были выбраны методики анализа качества почв и санитарно-химической оценки стройматериалов с добавлением промотходов РД 52.18.286-91.
Как видно из табл. 1, вытяжки 1 М HNО3 и кислотное разложение не обеспечивают наиболее "жестких" условий извлечения и класс опасности золы МСЗ №2, определенный по этим вытяжкам, оказался четвертым. Однако кислотное разложение дает суммарный показатель степени опасности компонентов к, = 93,39 ± 10, который находится на грани критического значения — 100. При кислотном автоклавном вскрытии извлечение ТМ повышается, что обусловливает увеличение к, до 107,2 ± 11 и отнесение отхода к третьему классу. Заметим, что в том случае, когда результат приближается к критическому значению, может появиться желание использовать верхнюю или нижнюю границы оценки класса, но нужно иметь в виду, что это не всегда правомочно. Элементы, определяющие класс опасности юлы МСЗ № 2. располагаются но значимости к следующем порядке:
• полная вытяжка Pb > Zn > Сг;
• вытяжка ЛЛЬ - Pb > Zn > Cd > Мп > Сг;
• вытяжка I М HNO. — РЬ> Zn>Cd> Cu^Mn:
•. кислотное разложение Pb > Zn > Cd > Си Сг > Ni.
Согласно результатам исследований РЬ и Zn определяют степень опасности золы (84 92 с) по неорганической компоненте.
Содержание в летучей золе растворимых в воде веществ в 20
— 30 раз выше их концентрации в шлаке.
Как следует из результатов исследований авторов, в состав летучей золы входит до 20 < сульфатов, а также большое количество растворимых в воле примесей, таких, как соли свинца, цинка, ртути, особенно кадмия, хлоридов и фторидов. Высокая концентрация в летучей юле растворимых в воде примесей делают ее непригодной для использовании в сельском хозяйстве, а в ряде случаев и в качестве строительного материала. В общем случае летучая зола обладает большей, по сравнению со шлаком МСЗ и юлой уноса энергетического топлива, когезионностью и может быть отнесена к среднеслипающимся пылевидным порошкам.
Содержание опасных для человека диоксинов (к ним относятся первые элементы двумерною гомологического ряда — ПХДД и ПХДФ) в летучей юле может достигать 10 — 20 м кг/кг, в то время как предельно допустимая концентрация диоксинов в России в почве, используемой в сельском хозяйстве, не должна превышать 0,133 нг/кг.-
Учитывая вышеизложенное, можно считать, что содержание ПХДЦ/ПХДФ в образцах почвы, отобранных в районе МСЗ Na 2, является вполне допустимым для жилой зоны города. Шлак по отношению к диоксинам практически безопасен, в то время как зольные отходы содержат ПХДД и ПХДФ в концентрациях, в сотни раз превышающих допустимые. Именно эти данные свидетельствуют об особой токсичности золы с фильтров МСЗ.
Таким образом, для обезвреживания и/или утилизации шлака могут быть использованы существующие технологии обращения с силикатным сырьем для получения промышленных полупродуктов или изделий промышленного назначения, а для утилизации зольных отходов с фильтров МСЗ необходимы технологии, обеспечивающие гарантированную деструкцию молекул диоксинов, создание долговременных условий для предотвращения их рекомбинации и защиту окружающей среды от высокодисперсной силикатной пыли.
Другие рефераты на тему «Экология и охрана природы»:
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль