Газоаэрозольные выбросы АЭС
Кроме рассмотренных выше радионуклидов, в выбросах АЭС присутствуют также изотопы трития — сверхтяжелого водорода, и углерода 14. Тритий, содержащийся в воздушных выбросах и водяных сбросах АЭС, входит в состав паров воды и практически беспрепятственно проходит системы очистки. Радиобиологическая роль трития определяется его химическими свойствами, которые полностью соответствуют обычному водор
оду, в результате чего тритий может входить в состав любых органических и неорганических соединений. Поскольку период полураспада трития довольно велик (12,26 года), он мог бы представлять серьезную радиационную опасность если бы не являлся очень мягким бета-излучателем ( средняя энергия бета-излучения трития составляет 5,8 кэВ) Доля трития, выбрасываемого в атмосферу АЭС с реактором ВВЭР-1000, составляет 32% от его общего поступления в окружающую среду АЭС (остальное количество 3H содержится в жидких сбросах). Средняя концентрация изотопа в воздушном выбросе реактора данного типа — 1 — 2 Бк/л. Для реакторов РБМК эти показатели в 10 — 100 раз ниже. 14С — также биогенный элемент, который может участвовать в биохимических и биологических процессах, наряду со своим стабильным изотопом.
Его излучение (чистый бета-излучатель, со средней энергией 54 кэВ) не представляет серьезной радиационной опасности. Однако, благодаря своему большому периоду полураспада (5730 лет), углерод-14 может накапливаться и, в связи со своей биологической активностью, имеет важное значение. 14С образуется в естественных условиях в верхних слоях атмосферы в результате взаимодействия космических нейтронов с азотом воздуха.
На АЭС он образуется в результате активации 13С, 14N, и 17О. Основная масса 14С удерживается в месте его образования, в активной зоне, и за ее пределы не поступает, и АЭС не играют существенной роли, как источник 14C. В связи с тем, что большие количества 14C образовывались при ядерных испытаниях, а также при переработке облученного ядерного топлива, в настоящее время во всем мире проводится контроль его содержания в объектах внешней среды, однако допустимых норм его содержания в выбросах АЭС не установлено.
В соответствии с Государственной программой Украины по обращению с РАО, на период до 2005 года система обращения с РАО АЭС должна состоять из:
• центрального предприятия АЭС по переработке и временного хранения РАО (ЦППРО);
• сети предприятий по сбору и предварительного кондиционирования РАО;
• унифицированного транспортно-контейнерного комплекса;
• учета, оперативной связи и радиационного контроля.
Базовым элементом системы обращения с РАО является ЦППРО, где используются наиболее сложные технологии переработки РАО.
На АЭС используются простые технологии подготовки РАО к транспортированию: сортировка и компактирование TPO, переработка ЖРО на установках глубокого выпаривания до получения солевого плава. Технологическая оснащенность ЦППРО должна обеспечивать требования обращения с РАО, которые возникают не только в процессе работы, но и во время вывода АЭС из эксплуатации.
Распространение радиоактивного загрязнения среды, то есть передача его между различными компонентами окружающей среды (в атмосфере, воде, почве), обусловлено разными процессами: химическими, массопередачей, внешними движущими силами, переносом внутри той или иной среды за счет конвекции или диффузии, биологическим обменом. Схема миграции радионуклидов от выбросов и сбросов АЭС представлена на рисунке 3.
Рис.3. Схема миграции радионуклидов от выбросов и сбросов АЭС.
Интересно рассмотреть поведение некоторых радионуклидов, наиболее характерных для различных типов выбросов АЭС:
криптон-85 почти полностью удерживается в атмосфере и в основном воздействует внешним облучением; облучение за счет ингаляции носит вторичный характер;
ксенон-133 по своему поведению аналогичен криптону, однако, малый объем выброса и короткий период полураспада снижает его влияние;
углерод-14 в реакторах кипящего типа выбрасывается в основном в виде двуокиси углерода, в то время как в водо-водяных реакторах под давлением соотношение углерода-14, связанного в диоксиде и оксиде и в гидрокарбонате (в газообразных выбросах), может существенно изменяться. Основные процессы обмена углеродом между атмосферой и биосферой — через фотосинтез, а между атмосферой и водной поверхностью — через слой смешения в незначительной степени происходит седиментация в водной среде, а также преобразование в карбонатные формы, поэтому основное воздействие осуществляется через пищевые продукты (доля воздействия за счет ингаляции — 1 %);
тритий в основном выбрасывается в виде газа, который в пределах двух суток за счет окисления превращается в тяжелую воду; пары тяжелой воды участвуют в глобальном гидрологическом цикле, воздействуя за счет ингаляции, через кожу, а также за счет приема с водой и пищей. Тритиевый газ воздействует за счет ингаляции, причем 1,6% поступившего при ингаляции трития переходит в кровь, а менее 0,04% — в тяжелую воду;
йод-131 переносится на большие расстояния в атмосферев виде пара или микрочастиц и мигрирует по цепочке воздух—трава—корова (овца, коза) — молоко—человек, поступает в организм также за счет ингаляции и, кроме того, необходимо учитывать и его воздействие от внешнего облучения;
йод-129, в зависимости от химической формы, может присутствовать в атмосфере в неодинаковых количествах. Различные его формы по разному подвергаются мокрому осаждению на поверхности суши и воды, испаряются с водной поверхности и участвуют в фотохимических процессах. При осаждении йода-129 наиболее важный путь к человеку — сохранение в листве с последующим переходом в почву и растительную пищу;
Стронций-89, стронций-90, цезий-134, цезий-137 и барий-140 обычно выбрасываются в виде аэрозолей и воздействуют через пищевые цепочки, ингаляцию и внешнее облучение; в их миграции гравитационное осаждение не играет особой роли, а основные процессы перехода из атмосферы в почву и воду — сухое осаждение и вымывание осадками.
С целью ограничения воздействия АЭС на окружающую среду, для каждой АЭС регламентируются предельно допустимые выбросы (ПДВ) и сбросы (ПДС). Предельно допустимые выбросы устанавливаются для АЭС индивидуально и рассчитываются с учетом размера санитарно-защитной зоны, высоты вентиляционной трубы, в зависимости от усредненных метеорологических условий в районе расположения АЭС. Расчет ПДВ ведется с учетом условий не превышения эффективной эквивалентной дозы облучения населения от техногенных источников и дозовой квоты, обусловленной радиоактивными отходами от АЭС. Нормами радиационной безопасности Украины (НРБУ-97) эта дозовая квота установлена в размере 8 % от Предела Дозы для населения.
Таблица 2. Квоты годового предела эффективной, эквивалентной дозы ПД, мЗв, для критических групп населения от АЭС
Источник облучения |
Квота предела дозы за счет всех путей формирования дозы от выбросов |
Сбросы: квота ПД за счет критичного вида водопользования |
Суммарная квота предела дозы (ПД) для отдельного производства | |||
% |
мкЗв |
% |
мкЗв |
% |
мкЗв | |
АЭС, АТЭЦ, ACT |
4 |
40 |
1 |
10 |
8 |
80 |
Другие рефераты на тему «Экология и охрана природы»:
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль