Расчет прогноза уровня загрязнения водного объекта (фенолы)

ФЕНОЛ - это сильный яд для водоемов. Уже малые количества ФЕНОЛА приводят к изменению вкуса употребляемых в пищу рыб. Значительно превосходят ФЕНОЛ по токсичности широко распространенные хлорфенолы, напр, применяемый для консервации дерева пентахлорфенол (ПХФ).

Превышение ПДК по фенолам было в 4 раза. В этой работе я попытаюсь определить. На каком расстоянии от данного створа концентрация з

агрязняющих веществ достигает уровня ПДК

3. Гидрологические параметры, необходимые для расчета

Для расчета прогноза уровня загрязнения водного объекта нам необходимы следующие параметры: расход реки (Qp - [м3/сек]), расход сточных вод (Qст - [м3/сек]) ширина реки (B - [м]), средняя глубина реки (H - [м]), концентрация загрязняющего вещества (Cст - [г/м3]). Также для расчета коэффициента турбулентной диффузии нам необходим уклон водной поверхности (I - ‰)

4. Описание методов расчета

Модели качества воды должны быть достаточно простыми в практическом исполнении, не требовать большого количества исходной информации, включать основные факторы формирования качества воды, обладать универсальностью и давать достаточно надежные результаты (или иметь хорошую оправдываемость).

При моделировании качества воды необходимо учитывать динамику распределения загрязнений и их трансформацию по длине реки или по объему водоема (перемешивание и разбавление вод). Поэтому расчетные модели могут быть одно - , двух - или трехмерными.

Однако существенное различие в методах расчета обычно сказывается вблизи места выпуска сточных вод, а в случае, когда это расстояние превышает 30 м, различные методы дают близкие результаты. Расхождение расчетных данных вблизи места выпуска объясняется сложностью учета характера начального разбавления.

Как пример необходимого количества исходной информации при математическом прогнозе поля загрязнения в случае проектирования выпуска сточных вод может служить набор основных данных, позволяющих рассчитать распределение концентрации консервативного и неконсервативного загрязняющего вещества, а также дефицит кислорода в воде при береговом выпуске сточных вод:

- минимальный расход воды 95% - ной обеспеченности в створе выпуска,

- средняя глубина и ширина потока,

- площадь поперечного сечения потока,

- гидравлический уклон и радиус русла потока,

- средняя и динамическая скорость течения,

- фоновая концентрация и фоновый дефицит кислорода,

- коэффициент скорости биохимического потребления кислорода,

- коэффициент скорости реаэрации,

- расход сточных вод на выходе из выпуска,

- концентрация консервативного и неконсервативного загрязняющего вещества в сточных водах при выпуске.

В зависимости от характера взаимодействия выброса и водного объекта и применяемой модели вид и количество составляющих будут несколько меняться. Степень сложности модели определяется количеством и надежностью исходной информации, возможностью использования вычислительных машин и их мощностью.

Наличие разнообразных моделей прогнозирования качества вод обусловливает возможность выбора конечных результатов на основании оценки экономической эффективности рассматриваемых вариантов, в свою очередь учитывающих возможности управления водохозяйственными системами и их преобразования. При этом основными путями являются увеличение степени очистки сточных вод, усовершенствование или создание регулирующих водохранилищ. Преимущество отдается варианту. имеющему наименьшие капитальные вложения и эксплуатационные затраты при сохранении допустимых норм качества воды.

Детальными методами будем называть численные методы решения уравнений турбулентной диффузии, позволяющие получать полу концентраций вещества в пределах всей расчетной области, начиная от источника загрязнения до некоторого расчетного створа. В общем, дифференциальном уравнении значения dc,dx,dy,dz заменим их конечными приращениями ∆с, ∆x, ∆y, ∆z.

4.1 Расчет детальным методом по схеме плоской задачи в координатах (х,z)

1. На плане реки или водоема обозначается место поступления сточных вод, и через него проводят поперечник. Ниже - речной поток схематизируют и делят на расчетные клетки. Скорость сточных вод, сбрасываемых в водный поток в месте поступления, принимается равный скорости течения реки. Вычисляется условная площадь поперечного сечения потока, в месте его впадения притока по следующей формуле:

2. При решении плоской задачи для расчета распределения концентраций Сст. В координатах – x,z необходимо определить ширину загрязненной струи потока в начальном створе.

B

3. Величина b необходимая для назначения ширины расчетной клетки ∆z. Наибольшая допустимая величина ∆z при впадении сточных вод у берега принимается равной:

b

При выпуске сточных вод на некотором расстоянии от берега или на середину потока, тогда ∆z может быть равна половине ширины загрязненной струи.

4. При расчете турбулентной диффузии рассматриваемую часть потока делят на клетки, соответствующие ∆x и ∆z, получая при этом расчетную сетку. Клетки, попадающие в струю притока сточных вод в начальном поперечнике заполняются числами, выражающие начальную концентрацию вещества, т.е. концентрацию вещества в сточных водах, остальные клетки заполняются числами, выражающими естественную концентрацию загрязняющего вещества в реке - это могут быть и нулевые концентрации.

Если размеры клеток получаются очень малыми, то расчет с принятым делением ведется до определенного створа, в котором загрязняющее вещество окажется распределенным в 20-50 клетках. После этого клетки объединяют по 2-4 - для плоской задачи и по 4-9-для пространственной. Получая новые средние значения концентрации в клетках и новые линейные размеры клеток. Новые концентрации получаются как средние арифметические из объединенных клеток. Линейные размеры получают соответствующем умножением имеющихся размеров ∆z и ∆y.

∆X укрупненной клетки определяется так:

∆Xукр=∆Xпред•m2

5. Для нахождения промежутка, через который нужно устанавливать следующий створ рассчитаем величину m является функцией коэффициента Шези С и для пределов 10 £ С ³ 60 связана с С следующей зависимостью:

m = 0,7 С + 6

при С ³ 60 m = const = 48.

6. Коэффициент турбулентной диффузии, являющийся основным параметром при расчете перемещения в потоке, вычисляется по формуле

где v ср - среднее значение скорости на участке распространения загрязняющих веществ, м. c; Нср - средняя глубина на расчетном участке, м; g - ускорение свободного падения = 9, 81 м / с.

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Экология и охрана природы»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы