Экологический мониторинг состояния природных вод в зоне техногенного воздействия
3. Значительно меньшая опасность изменения компонентного состава исследуемой воды вследствие протекания каких-либо превращений определяемых веществ.
Основными факторами, определяющими эффективность процесса вымораживания, являются скорость нарастания льда, возможность отвода веществ из зоны раствора, прилегающей к намерзающему льду, и структура получаемого льда.
Возможны различные вариа
нты проведения процесса, из которых чаще всего используют следующие:
1. В простейшем случае анализируемую воду помещают в конусообразный сосуд, расширяющийся кверху. Вымораживают основную массу воды в морозильной камере при температуре –120 С или в бане с охлаждающей смесью. Способ очень прост, однако здесь практически нет возможности влиять на параметры, определяющие эффективность процесса;
2. По Бейкеру, исследуемую воду помещают в круглодонную колбу, емкость которой должна в 4-5 раз превышать объем пробы. Колбу с пробой погружают под углом 600 в охлаждающую смесь с температурой –120 С и вращают с частотой 80 оборотов/мин. При необходимости можно варьировать температуру вымораживания и частоту вращения, влияя таким образом на скорость намерзания льда и быстроту отделения от поверхности льда слоя воды, более концентрированного чем остальной раствор. Вымораживание по Бейкеру проводят до замерзания приблизительно 9/10 раствора. Хладоагентами могут быть солевой раствор, фенолы, жидкий аммиак и др.;
3. Оригинальным вариантом вымораживания является так называемый метод направленной кристаллизации. Он осуществляется на специальной установке, обеспечивающей постепенное погружение пробирок с исследуемой водой в охлаждающую смесь при постоянном и достаточно интенсивном перемешивании жидкой фазы около границы лед-вода. Нарастание кристалла льда здесь происходит снизу вверх. Метод позволяет максимально варьировать условия эксперимента и влиять таким образом на эффективность процесса.
Существенным ограничением метода вымораживания является резкое падение эффективности при анализе систем с высоким солевым фоном. При этом получают только 10-12-кратное обогащение. Уменьшение эффективности концентрирования наблюдается при этом в явной мере для всех компонентов раствора. Оно связано с нарушением структуры льда и захватом уже сконцентрированной фазы намерзающими кристаллами.
Соосаждениеявляется одним из самых эффективных методов концентрирования при определении неорганических веществ. Таким способом часто выделяют очень малые (следовые) количества определяемого металла из большого объема сточной воды. Для этого вводят в достаточном количестве соль другого металла (макрокомпонент, носитель, коллектор) и осаждают этот металл подходящим реагентом. Образующийся осадок увлекает с собой и микрокомпоненты – определяемый металл. Выпавший осадок растворяют в возможно меньшем объеме необходимого растворителя и анализируют полученный концентрат. Методом соосаждения можно достигнуть повышения концентрации в десятки тысяч раз.
Одним из важнейших методов, применяемых для концентрирования неорганических и органических веществ, является экстракция. Наиболее часто используемая при анализе воды жидкостно–жидкостная экстракцияможет проводиться встряхиванием анализируемого образца с органическим раствором в делительной воронке или автоматически, при использовании экстрактора непрерывного действия. В зависимости от условий проведения процесса экстракты могут содержать малолетучие загрязнители средней и малой полярности (универсальная экстракция малолетучих веществ), кислоты или основания (селективная экстракция при соответствующих значениях рН).
К недостаткам метода жидкостно-жидкостной экстракции следует отнести следующие:
1. Процесс экстрагирования может отнимать много времени;
2. Зачастую используются токсичные растворители;
3. Разделение органической и водной фаз часто затруднено образованием устойчивой эмульсии (особенно в ручной экстракции).
Обычно объем получаемого экстракта довольно велик, поэтому в некоторых случаях (например, при использовании для анализа воды хроматографических методов) необходима дополнительная операция - выпаривание и концентрирование.
К применяемым в методе экстракции экстрагентам предъявляют следующие требования:
1. Экстрагент должен обладать хорошей способностью извлекать одно определяемое вещество или группу веществ;
2. Он должен отличаться малой растворимостью в воде;
3. Желательно, чтобы экстрагент имел достаточно высокую температуру кипения (не ниже 50 ° С);
4. Плотность экстрагента должна как можно больше отличаться от плотности анализируемого раствора;
5. Экстрагент не должен взаимодействовать с компонентами анализируемого раствора;
6. Он должен быть чистым и легко регенерироваться в лабораторных условиях.
При выборе наиболее подходящего экстрагента используют справочные данные по коэффициентам распределения, по растворимости соединений в воде и в различных органических растворителях. Можно также ориентироваться на химическое сродство экстрагируемого вещества и экстрагента.
В последнее время широко используется также твердофазная экстракция, основанная на разделении и концентрировании в результате сорбционных или ионообменных процессов. Этот способ пригоден для извлечения из воды соединений как малой и средней, так и высокой полярности (в зависимости от характеристик используемого сорбента). Пробы большого объема могут быть обработаны с использованием достаточно малых количеств твердой фазы, что в свою очередь требует малого объема растворителя для последующей десорбции сконцентрированных соединений. Это снимает необходимость дополнительного выпаривания и существенно уменьшает риск загрязнения образца. Метод является значительно более экспрессным по сравнению с классическими методами выделения и концентрирования.
В зависимости от объема пробы воды и характера анализируемого вещества процесс может быть проведен либо на картридже (патроне, заполненном сорбентом), либо на мембранных дисках. Применение высокоэффективных картриджей часто позволяет проводить полное выделение большого числа загрязнителей. Процесс легко автоматизировать.
Особенно удачным является применение метода твердофазной экстракции для выделения и концентрирования полярных веществ. Загрязнители улавливают и предварительно концентрируют на крупносетчатых пористых синтетических сорбентах, называемых смолами (например, амберлит-ХАД), которые затем высушивают, промывают дихлорметаном и полученный элюат используют для анализа (при необходимости концентрируют его). Элюирование растворителем иногда заменяют термической десорбцией, при этом обеспечивается наиболее высокая степень обогащения пробы. Ограничение метода связано с недостаточно высокой термической стабильностью полимерных сорбентов, что существенно сужает область его применения.
Еще одним методом выделения и одновременного концентрирования является продувка с последующим улавливанием. Этот метод используют главным образом для анализа неполярных летучих органических соединений перед их хроматографическим определением. Продуваемый через пробу воды инертный газ захватывает летучие органические соединения, которые затем улавливаются на таких адсорбентах, как тенакс или активный уголь и (или) конденсируют в криогенной ловушке. Ловушка с адсорбентом обычно встроена в десорбционную камеру, снабженную мощным нагревательным устройством, которое обеспечивает десорбцию сконцентрированных веществ. Эта методика имеет существенные достоинства, поскольку позволяет выделить "чистую" пробу из грязной воды. Устройство для стриппинга может быть легко смонтировано на газовом хроматографе с подключенными последовательно детекторами электронно–захватным, пламенно-ионизационным, фотоионизационным с десорбцией через замкнутую петлю или с масс-спектрометрическим детектированием. С помощью такой методики могут быть проанализированы загрязнители в питьевой воде при очень низких концентрациях – на уровне мкг/л или даже нг/л.
Другие рефераты на тему «Экология и охрана природы»:
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль