Комплекс статистических методов в помощь психологу

Нулевая и альтернативная гипотезы могут быть направленными и ненаправленными.

Статистические критерии.

Статистический критерий - это правило, обеспечивающее надежное поведение, то есть принятие истинной и отклонение ложной гипотезы с высокой вероятностью. Статистический критерий обозначает метод расчета определенного числа и само это число.

Параметрические критерии - это критерии, в

ключающие в формулу расчета параметры распределения, то есть средние и дисперсии (t-критерий Стъюдента, критерий F и др.) Непараметрические критерии - это критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами (критерий-Q Розенбаума, критерий-Т Вилкоксона и др.) Параметрические критерии и непараметрические критерии имеют свои преимущества и недостатки.

Параметрические критерии:

1. Позволяют прямо оценить различия в средних, полученных в двух выборках (t - критерий Стъюдента).

2. Позволяют прямо оценить различия в дисперсиях (критерий Фишера) 3. Позволяют выявить тенденции изменения признака при переходе от условия к условию (дисперсионный однофакторный анализ), но лишь при условии нормального распределения признака.

4. Позволяют оценить взаимодействие двух и более факторов в их влиянии на изменения признака (двухфакторный дисперсионный анализ).

5. Экспериментальные данные должны отвечать двум, а иногда трем, условиям:

а) значения признака измерены по интервальной шкале;

б) распределение признака является нормальным;

в) в дисперсионном анализе должно соблюдаться требование равенства дисперсий в ячейках комплекса.

6. Математические расчеты довольно сложны.

7. Если условия, перечисленные в п.5, выполняются, параметрические критерии оказываются несколько более мощными, чем непараметрические.

Непараметрические критерии.

1. Позволяют оценить лишь средние тенденции, например, ответить на вопрос, чаще ли в выборке А встречаются более высокие, а в выборке Б - более низкие значения признака (критерии Q, U, и др.).

2. Позволяют оценить лишь различия в диапазонах вариативности признака (критерий).

3. Позволяют выявить тенденции изменения признака при переходе от условия к условию при любом распределении признака (критерии L и S).

4. Эта возможность отсутствует.

5. Экспериментальные данные могут не отвечать ни одному из этих условий:

а) значения признака могут быть представлены в любой шкале, начиная от шкалы наименований;

б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения необязательно и не нуждается в проверке;

в) требования равенства дисперсий отсутствует.

6. Математические расчеты по большей части просты и занимают мало времени (за исключением лишь некоторых критериев).

7. Если условия, перечисленные в п.5, не выполняются, непараметрические критерии оказываются более мощными, чем параметрические, так как они менее чувствительны к "засорениям".

1.2 Статистический анализ экспериментальных данных

Методы первичной статистической обработки результатов эксперимента Статистические методы применяются при обработке материалов психологических исследований для того, чтобы извлечь из тех количественных данных, которые получены в экспериментах, при опросе и наблюдениях, возможно больше полезной информации. В частности, в обработке данных, получаемых при испытаниях по психологической диагностике, это будет информация индивидуально-психологических особенностях испытуемых.

Методами статистической обработки результатов эксперимента называются математические приемы, формулы, способы количественных расчетов, с помощью которых показатели, получаемые в ходе эксперимента, можно обобщать, приводить в систему, выявляя скрытые в них закономерности. Речь идет о таких закономерностях статистического характера, которые существуют между изучаемыми в эксперименте переменными величинами.

Некоторые из методов математико-статистического анализа позволяют вычислять так называемые элементарные математические статистики, характеризующие выборочное распределение данных, например, выборочное среднее, выборочная дисперсия, мода, медиана и ряд других. Иные методы математической статистики, например, дисперсионный анализ, регрессионный анализ, позволяют судить о динамике изменения отдельных статистик выборки. С помощью третьей группы методов, скажем, корреляционного анализа, факторного анализа, методов сравнения выборочных данных, можно достоверно судить о статистических связях, существующих между переменными величинами, которые исследуют в данном эксперименте.

Все методы математико-статистического анализа условно делятся на первичные и вторичные. Первичными называют методы, с помощью которых можно получить показатели, непосредственно отражающие результаты производимых в эксперименте измерений. Соответственно под первичными статистическими показателями имеются в виду те, которые применяются в самих психодиагностических методиках и являются итогом начальной статистической обработки результатов психодиагностики. К первичным методам статистической обработки относят, например, определение выборочной средней величины, выборочной дисперсии, выборочной моды и выборочной медианы. В число вторичных методов обычно включают корреляционный анализ, регрессионный анализ, методы сравнения первичных статистик у двух или нескольких выборок.

Рассмотрим методы вычисления элементарных математических статистик, начав с выборочного среднего.

Выборочное среднее значение как статистический показатель представляет собой среднюю оценку изучаемого в эксперименте психологического качества. Эта оценка характеризует степень его развития в целом у той группы испытуемых, которая была подвергнута психодиагностическому обследованию. Сравнивая непосредственно средние значения двух или нескольких выборок, мы можем судить об относительной степени развития у людей, составляющих эти выборки, оцениваемого качества. Выборочное среднее определяется при помощи следующей формулы:

где - выборочная средняя величина или среднее арифметическое значение по выборке; n количество испытуемых в выборке или частных психодиагностических показателей, на основе которых вычисляется средняя величина; хk частные значения показателей у отдельных испытуемых. Всего таких показателей n, поэтому индекс k данной переменной принимает значения от 1 до n; принятый в математике знак суммирования величин тех переменных, которые находятся справа от этого знака.

Дисперсия как статистическая величина характеризует, на сколько частные значения отклоняются от средней величины в данной выборке. Чем больше дисперсия, тем больше отклонения или разброс данных. Иногда вместо дисперсии для выявления разброса частных данных относительно средней используют производную от дисперсии величину, называемую выборочное отклонение. Оно равно квадрат ному корню, извлекаемому из дисперсии, и обозначается тем же самым знаком, что и дисперсия, только без квадрата - :

Страница:  1  2  3  4  5 


Другие рефераты на тему «Психология»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы