Комплекс статистических методов в помощь психологу
Медианой называется значение изучаемого признака, которое делит выборку, упорядоченную по величине данного признака, пополам. Справа и слева от медианы в упорядоченном ряду остается по одинаковому количеству признаков.
Мода еще одна элементарная математическая статистика и характеристика распределения опытных данных. Модой называют количественное значение исследуемого признака, наиболее час
то встречающееся в выборке. Иногда исходных частных первичных данных, которые подлежат статистической обработке, бывает довольно много, и они требуют проведения огромного количества элементарных арифметических операций. Для того чтобы сократить их число и вместе с тем сохранить нужную точность расчетов, иногда прибегают к замене исходной выборки частных эмпирических данных на интервалы. Интервалом называется группа упорядоченных по величине значений признака, заменяемая в процессе расчетов сред ним значением.
1.3 Вторичные методы обработки материалов психологических исследований
С помощью вторичных методов статистической обработки экспериментальных данных непосредственно проверяются, доказываются или опровергаются гипотезы, связанные с экспериментом. Эти методы, как правило, сложнее, чем методы первичной статистической обработки, и требуют от исследователя хорошей подготовки в области элементарной математики и статистики. Обсуждаемую группу методов можно разделить на несколько подгрупп:
1. Регрессионное исчисление.
2. Методы сравнения между собой двух или нескольких элементарных статистик (средних, дисперсий и т.п.), относящихся к разным выборкам.
3. Методы установления статистических взаимосвязей между переменными, например их корреляции друг с другом.
4. Методы выявления внутренней статистической структуры эмпирических данных (например, факторный анализ).
Регрессионное исчисление - это метод математической статистики, позволяющий свести частные, разрозненные данные к некоторому линейному графику, приблизительно отражающему их внутреннюю взаимосвязь, и получить возможность по значению одной из переменных приблизительно оценивать вероятное значение другой переменной.
Следующий метод вторичной статистической обработки, посредством которого выясняется связь или прямая зависимость между двумя рядами экспериментальных данных, носит название метод корреляций. Он показывает, каким образом одно явление влияет на другое или связано с ним в своей динамике. Подобного рода зависимости существуют, к примеру, между вели чинами, находящимися в причинно-следственных связях друг с другом. Если выясняется, что два явления статистически достоверно коррелируют друг с другом и если при этом есть уверенность в том, что одно из них может выступать в качестве причины другого явления, то отсюда определенно следует вывод о наличии между ними причинно-следственной зависимости.
Имеется несколько разновидностей данного метода: линейный, ранговый, парный и множественный. Линейный корреляционный анализ позволяет устанавливать прямые связи между переменными величинами по их абсолютным значениям. Эти связи графически выражаются прямой линией, отсюда название "линейный". Ранговая корреляция определяет зависимость не между абсолютными значениями переменных, а между порядковыми местами, или рангами, занимаемыми ими в упорядочен ном по величине ряду. Парный корреляционный анализ включает изучение корреляционных зависимостей только между парами переменных, а множественный, или многомерный, между многими переменными одновременно.
Глава 2. Практическая часть
2.1 Ранговая корреляция
В психологии часто возникает потребность анализа связи между переменными, которые не могут быть измерены в интервальной или реляционных шкалах, но тем не менее поддаются упорядочению и могут быть проранжированы по степени убывания или возрастания признака. Для определения тесноты связи между признаками, измеренными в порядковых шкалах, применяются методы ранговой корреляции. К ним относятся: коэффициенты ранговой корреляции Спирмена и Кендалла (используются для определения тесноты связи между двумя величинами) и коэффициент конкордации (устанавливает статистическую связь между несколькими признаками). Использование коэффициента линейной корреляции Пирсона в случае, когда о законе распределения и о типе измерительной шкалы отсутствует сколько-нибудь надежная информация, может привести к существенным ошибкам.
Методы ранговой корреляции могут быть использованы для определения тесноты связи не только между количественными переменными, но и между качественными признаками при условии, что их значения можно упорядочить и проранжировать. Эти методы также могут быть использованы применительно к признакам, измеренным в интервальных и реляционных шкалах, однако их эффективность в этом случае всегда будет ниже.
Коэффициент ранговой корреляции Спирмена. Каждая из двух совокупностей располагается в виде вариационного ряда с присвоением каждому члену ряда соответствующего порядкового номера (ранга), выраженного натуральным числом. Одинаковым значениям ряда присваивают среднее ранговое число.
Сравниваемые признаки можно ранжировать в любом направлении:
как в сторону ухудшения качества (ранг 1 получает самый большой, быстрый, умный и т.д. испытуемый), так и наоборот. Главное, чтобы обе переменные были проранжированы одинаковым способом.
Коэффициент ранговой корреляции Спирмена находится по формуле n
6 ⋅ ∑ d i2
rS = 1 − i =1, n −n3
где di - разность рангов для каждой i-пары из n наблюдений.
Если в вариационных рядах для X и Y встречаются члены ряда с одинаковыми ранговыми числами, то в формулу для коэффициента корреляции Спирмена необходимо внести поправки Tx и Ty на одинаковые ранги:
n
6 ⋅ ∑ d i2 l
rS = 1 − i =1, T = ∑ (t k − t k).
3
1
(n 3 − n) − (Tx + T y) k =1
2
Здесь l - число групп в вариационном ряду с одинаковыми ранговыми числами; tk - число членов в каждой из l групп.
Ранговый коэффициент корреляции Спирмена, как и линейный, изменяется от -1 до +1, однако значение рангового коэффициента корреляции Спирмена всегда меньше значения коэффициента линейной корреляции Пирсона: rS < r.
Проверка гипотезы о значимости коэффициента ранговой корреляции Спирмена проводится по-разному в зависимости от объема выборки.
1. Объем выборки больше 30 (n > 30).
Проверка нулевой гипотезы h0: с = 0 при альтернативной h1: с ≠ 0 осуществляется с помощью критерия Стьюдента и заключается в вычислении величины rS
t = ⋅ n−2,1 − rS2
имеющей распределение Стьюдента с df = n - 2 степенями свободы. Эмпирическое значение сравнивается с критическими значениями tб (n - 2).
Нулевая гипотеза с = 0 не отвергается, если эмпирическое значение попадает в область допустимых значений:
| t | ≤ t0,05 (df), df = n - 2.
Коэффициент ранговой корреляции Спирмена значимо отличается от нуля, если эмпирическое значение попадает в критическую область:
Другие рефераты на тему «Психология»:
Поиск рефератов
Последние рефераты раздела
- Взаимосвязь эмоционального интеллекта и агрессивности у студентов факультета психология
- Инженерия интимно-личностного общения и ее инструменты
- Я, Госпожа Удачи!
- Аналитическая психология Юнга
- Взаимодействие преподавателей и студентов в вузе
- Взаимосвязь эмоционального интеллекта и тревоги у студентов
- Влияние психологической среды ВУЗа