Разработка канала для комплексной скважинной аппаратуры
Кварцевые термопреобразователи. В последние годы для измерения температур от -80 до +250ºС все более широкое распространение получают кварцевые термопреобразователи, отличающиеся высокой разрешающей способностью и имеющие частотный выходной сигнал, хорошо защищенный от помех и легко преобразуемый в цифровой код. В кварцевом термопреобразователе используется зависимость собственной частоты
кварцевого элемента от температуры.
Кварцевые термопреобразователи имеют высокую чувствительность (до 103Гц/К), высокую временную стабильность (0,02К за год) и разрешающую способность 10-4-10-7К, что и определяет перспективность их использования в цифровых термометрах, а применение микропроцессоров открывает возможность учета их индивидуальных нелинейных градуировочных характеристик.
Пирометры. Приборы для измерения температуры, основанные на использовании энергии излучения нагретых тел, называются пирометрами. Они делятся на радиационные, яркостные и цветовые.
Радиационные пирометры используются для измерения температуры от 20 до 2500ºС. Они градуируются по излучению абсолютно черного тела, поэтому неточность оценки коэффициента неполноты излучения вызывает погрешность измерения температуры.
Яркостные (оптические) пирометры основаны на сравнении в узком участке спектра яркости исследуемого объекта с яркостью образцового излучателя. Они обеспечивают более высокую точность измерений температуры, чем радиационные. Их основная погрешность обусловлена неполнотой излучения реальных физических тел и поглощением излучения промежуточной средой, через которую производится наблюдение.
Цветовые пирометры основаны на измерении на двух длинах волн, выбираемых обычно в красной или синей областях спектра. Диапазон измерения температур 900-2200ºС с основной погрешностью ±1%.
Шумовые термометры. Для измерения температуры в диапазоне 4-1300К применяются шумовые термометры, действие которых основано на зависимости шумового напряжения на резисторе от температуры. Практическая реализация метода заключается в сравнении шумов двух идентичных резисторов, один из которых находится при известной температуре, а другой – при измеряемой.
Термометры ядерного квадрупольного резонанса (ЯКР) основаны на взаимодействии градиента электрического поля кристаллической решетки и квадрупольного электрического момента ядра, вызванного отклонением распределения заряда ядра от сферической симметрии. Это взаимодействие обусловливает прецессию ядер, частота которой зависит от градиента электрического поля решетки. А он, в свою очередь, зависит от температуры, и с ее повышением частота ЯКР понижается. Погрешность измерения температуры 10К составляет ±0,02К, а температуры 300К ±0,002К.
Термометры, использующие явление ядерного магнитного резонанса (ЯМР), применяются для измерения низких температур. Прецизионный ЯМР-термометр предназначен для измерения температур от 1мК до 1К. Амплитуда сигнала ЯМР-термометра и период релаксации обратно пропорциональны абсолютной температуре [5].
В большинстве известных каротажных приборов и систем применяются резистивные (медные или платиновые) и полупроводниковые (на основе p-n перехода) датчики температуры. Однако указанные датчики имеют существенные недостатки.
Медные и платиновые термопреобразователи сопротивления обладают невысокой чувствительностью – их ТКС порядка 1/ºС. По сравнению с медными платиновые термопреобразователи имеют существенно более высокую временную стабильность параметров, однако у них большие габариты и инерционность.
Полупроводниковые датчики на основе p-n перехода имеют малые габариты и тепловую инерцию, но их точность не велика – в диапазоне температур 0 .100 ºС их погрешность порядка 0,5 .1 ºС. В связи с этим их использование целесообразно в каротажных измерительных приборах и системах с невысокими требованиями к точности измерения температуры.
В то же время давно известны полупроводниковые резистивные преобразователи температуры (термисторы), большим достоинством которых является высокая чувствительность. Их ТКС порядка 1/ºС, т.е. на порядок выше, чем у медных и платиновых терморезисторов. Однако их применение в термоизмерительной аппаратуре в течение многих лет сдерживалось следующими отрицательными факторами:
- существенной нелинейностью функции преобразования;
- неудовлетворительной временной стабильностью характеристик;
- большим разбросом характеристик от одного экземпляра к другому, а следовательно невзаимозаменяемостью.
Следует отметить, что в последние 10-12 лет в производстве термисторов произошли существенные изменения, которые определили перспективность их применения в разнообразных термоизмерительных приборах, в том числе и в приборах высокой точности.
С метрологической точки зрения к числу лучших из серийно выпускаемых термисторов можно отнести продукцию фирмы BetaTHERM (Ирландия). Совершенствование материалов и технологии позволило этой фирме обеспечить выпуск термисторов с высокой повторяемостью и долговременной стабильностью характеристик. Термисторы изготавливаются из различных материалов и имеют отрицательный температурный коэффициент сопротивления.
Основные характеристики указанных термисторов [6]:
1. Рабочий диапазон температур (-50 .+150) ºС;
2. Чувствительность (ТКС) (-4 .-5) %/ ºС;
3. Погрешность из-за изменения характеристик во времени в течение 10 лет 0,01 ºС/год;
4. Погрешность из-за разброса характеристик от экземпляра к экземпляру в диапазоне (0 .70) ºС (эта погрешность может быть исключена путем индивидуальной калибровки датчика) ±0,2 ºС;
5. Сопротивление различных термисторов при температуре 25 ºС
от 100 Ом до 1МОм;
6. Постоянная времени в жидкости у малоинерционных датчиков 0,3 с;
7. Малые габариты (например, миниатюрные термисторы microchip имеют диаметр 0,457 мм и длину 3,2 мм).
Таким образом, указанные термисторные преобразователи миниатюрны, малоинерционны, обладают высокой чувствительностью и долговременной стабильностью характеристик. Что касается нелинейности функции преобразования, то применение микропроцессоров или микро-ЭВМ позволяет легко учитывать реальную нелинейную функцию преобразования.
Следует отметить, что высокая чувствительность и большое сопротивление термисторов существенно упрощают построение последующих измерительных преобразователей и обеспечивают достижение высокой точности и разрешающей способности.
Таким образом, применение современных термисторов в средствах измерений для термического каротажа и соответствующих алгоритмов обработки информации и калибровки приборов позволяют обеспечить высокую точность измерений в широком диапазоне температур, высокую разрешающую способность, долговременную стабильность характеристик, высокое быстродействие, простоту конструкции датчика и схемы его включения.
2 Разработка структурной схемы
Другие рефераты на тему «Геология, гидрология и геодезия»:
- Теория фиксизма и мобилизма
- Основы разработки месторождений полезных ископаемых
- Новые результаты моделирования гидравлических характеристик дилювальных потоков из позднечетвертичного Чуйско-курайского ледниково-подпрудного озера
- Проектирование буровых работ с целью предварительной разведки месторождения Родниковое
- Геолого-географическая характеристика Волгограда
Поиск рефератов
Последние рефераты раздела
- Анализ условий формирования и расчет основных статистических характеристик стока реки Кегеты
- Геодезический чертеж. Теодолит
- Геодезические методы анализа высотных и плановых деформаций инженерных сооружений
- Асбест
- Балтийско-Польский артезианский бассейн
- Безамбарное бурение
- Бурение нефтяных и газовых скважин