Разработка канала для комплексной скважинной аппаратуры

Найдем параметры а и b. С одной стороны, в моменты времени t, равные 0 и ∞, напряжение U1(t) принимает следующие значения:

(3.9)

С другой стороны, как видно по временным диаграммам (рис. 3.3), в момент времени t=0 напряжение U1 =-kE, а в момент времени t

=∞ - U1 =E. Подставив данные значения напряжения в выражения (3.9), получим систему уравнений:

(3.10)

Решив систему, получим:

Подставляем a и b в выражение (3.7):

(3.11)

Как видно из временных диаграмм (рис. 3.3), в момент времени t=T/2 напряжения U1 и U2 равны:

Прологарифмируем последнее выражение:

Постоянная времени τ, как отмечалось ранее, равна , поэтому:

(3.12)

Таким образом, получена зависимость выходной величины от емкости датчика.

Рассчитаем основные компоненты схемы.

Расчет схемы начинаем, исходя из условия: при частота fmin=5kГц. Отсюда можно вычислить период следования импульсов:

(3.13)

С другой стороны, период находится по формуле (3.12). Необходимо задаться коэффициентом k. Если k взять близким к нулю, то может возникнуть погрешность, связанная с дрейфом нуля. Если же, наоборот, близким к единице, то также возникнет погрешность из-за того, что напряжение U1(t) будет плавно стремится к значению Е, и не будет четкого перехода. Поэтому целесообразно принять коэффициент k, равным 0,5.

Теперь находим значение сопротивления R1 из выражения (3.12):

(3.14)

Коэффициент k находится по формуле (3.6), т.е

(3.15)

С другой стороны, сумму сопротивлений R3 и R2 можно найти следующим образом:

(3.16)

де Iд – ток, протекающий через делитель, образованный резисторами R3 и R2. Пусть Iд=10-4А, тогда:

(3.17)

Решая совместно выражения (3.15) и (3.17), получим Согласно ГОСТ 2825-67, выбираем резисторы

Для выбора резисторов необходимо вычислить мощность, рассеиваемую на них:

(3.18)

3.3 Разработка принципиальной схемы преобразователя сопротивления в напряжение

В качестве первичного преобразователя температуры используется термистор фирмы BetaTHERM (Ирландия) – 2К7МСD1. Данный термистор при температуре 25º С имеет сопротивление 2 кОм, а в диапазоне температур от 0 до 120º С его сопротивление меняется от 5,65 кОм до 114,6 Ом [6].

Как уже отмечалось ранее, в цифровых термоизмерительных приборах и системах целесообразно использовать Сигма-Дельта АЦП и ratio-метрическую схему подключения к нему термисторного датчика (рис. 3.4).

Ratio-метрическая схема включения термистора

Рис. 3.4

Последовательно с термистором включается один прецизионный резистор R0, с которого снимается опорное напряжение UREF для Сигма-Дельта АЦП, входящего в состав ADuC834. Этот резистор должен иметь малый ТКС, т.к. именно от него зависит дополнительная температурная погрешность канала термометрии. Так, например, при использовании прецизионных резисторов фирмы HOLSWORTHY с ТКС 1/ºС дополнительная температурная погрешность для термисторного датчика при изменении температуры на 100 ºС составит (0,02 .0,03) ºС. Сопротивление опорного резистора должно быть не меньше максимального сопротивления датчика во всем рабочем диапазоне температур. Поскольку максимальное сопротивление термистора составляет 5,65 кОм, то R0=6,19 кОм.

Цифровой код на выходе АЦП определяется по следующей формуле:

(3.19)

где n – разрядность АЦП;

- напряжение, снимаемое с термистора:

(3.20)

Опорное напряжение определяется по следующей формуле:

(3.21)

Поставляя (3.20) и (3.21) в выражение (3.19), получим:

(3.22)

Таким образом, цифровой код не зависит от значения тока или напряжения, а зависит лишь от сопротивления. Поскольку R0 – резистор прецизионный и почти не изменяет своего значения с изменением температуры, то получаем прямо пропорциональную зависимость кода от сопротивления.

Определим предельные значения кода. При минимальной температуре:

Код для Т=120º С:

3.4 Режим работы ADuC834

Режим работы всей схемы в основном определяется режимом работы микроконвертора, который устанавливается путем внесения определенных комбинаций в те или иные регистры специальных функций, т.е. программирования ADuC.

Чтобы определить работу схемы необходимо использовать следующие регистры:

1) ADCMODE (регистр режима АЦП) используется для управления режимами работы обоих каналов АЦП. Для того, чтобы разрешить работу основного АЦП, в ячейку ADCOEN необходимо записать 1. В биты с именами MD2, MD1 и MD0 записываются соответственно 0, 1, 1 для установления циклического преобразования. В этом режиме регистры данных АЦП постоянно модифицируются с частотой выбранного потока на выходе.

2) ADC0CON (регистр управления основным АЦП) используется для конфигурации основного АЦП по диапазону, выбору канала, разрешению внешнего ИОН и режиму униполярного или биполярного преобразования. В бит с именем XREF0 записывается 1 для того, чтобы разрешить использование основным АЦП внешнего ИОН через контакты REFIN(+) и REFIN(-) (для ratio-метрической схемы). CH1 и CH0 – биты выбора канала для основного АЦП. Записываем два 0 для выбора входов AIN1 (ножка 9) и AIN2 (ножка 10). Затем в бит с именем UNI0 записывается 1 для разрешения униполярного кодирования. Далее для выбора входного диапазона АЦП в биты RN2, RN1, RN0 записываются три единицы, что соответствует напряжению +2,56 В.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Геология, гидрология и геодезия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы