Анализ эффективности проведения гидравлического разрыва пласта на Ельниковском месторождении
Рис. 11
Схема расположения подземного оборудования
при проведении ГРП на примере скважины 4006.
Рис. 12
2.5.4. Проведение перфорации
При проведении скважинных работ важно не допустить закупорки перфорационных отверстий. Все операции, которые могут привести к осыпям (цементирование, установка песчаных заг
лушек, проработка скребком и др.) должны проводиться до перфорирования. Затем жидкости в скважине вытесняются чистыми жидкостями. Эта операция также проводится до перфорирования.
За исключением случаев ограниченной перфорации, ПВР на скважине должно выполняться таким образом, чтобы минимизировать: давления трения в пристволье и риск преждевременного «Стопа» при закачке ГРП, падение давления в призабойной зоне и вынос проппанта при эксплуатации, а также, чтобы обеспечить хорошее перекрытие продуктивной зоны, избежав в то же время контакта трещины с зонами нежелательных флюидов.
Важно, чтобы диаметр перфорационных отверстий соответствовал размеру проппанта. Во многих случаях, особенно при осадконакоплениях, рекомендуется повторное перфорирование до начала ГРП. В отсутствие надежной информации в целях безопасности скважины рекомендуется ПВР с плотностью 20 отв/м, фазированием 60 град., с входным диаметром отверстий 12мм.
Длина интервала перфорации может оказать влияние на трещину. Для вертикальных скважин ограничение по интервалу перфорации 15-30 метров. На наклонно-направленных скважинах интервал ПВР должен прогрессивно уменьшаться при нарастании отхода от вертикали. В случае если зенитный угол ствола составляет 45 град и более, рекомендуемый интервал не должен превышать 10 метров. Интервал перфорации должен быть ограничен на скважинах с большим отходом и горизонтальных. Меньшие интервалы ПВР следует предусмотреть и в случае жестких пород, а также при неблагоприятной ориентации стрессов в призабойной зоне. Для горизонтальных скважин в меловых породах рекомендуемый интервал перфорации составляет от 0,7 до 2,5 метров, в зависимости от ориентации ствола. В более жестких породах интервал ПВР должен быть сокращен до 0,7 м. https://www.amedisin.ru шс 80 мк - купить сушильный шкаф 80.
На вертикальных скважинах и скв с зенитным углом менее 45 град прострел выполняется с фазированием 60 град. При больших углах отхода и на горизонтальных скважинах прострел выполняется с фазированием от 0 до 180 град с ориентацией кровли и подошвы интервала перфорации по вектору силы тяжести. За исключением случаев частичной (ограниченной) перфорации плотность ПВР должна быть как минимум 10 отв./м. Как правило, глубина отверстий в 100-150 мм является достаточной.
Депрессия на пласт может снизить начальное давление разрыва на 68 атм и, вероятно, даст возможность привлечения к ГРП большей части интервала перфорации. Вызов притока перед ГРП имеет такой же эффект. В иных случаях избыточное (репрессия) или сбалансированное давление может быть достаточным. Перфорирование на очень высокой репрессии перед ГРП может помочь минимизировать проблемы с искривлением каналов, обусловленным некачественными работами ПВР, однако, как правило, не рекомендуется.
2.5.5. Дизайн гидравлического разрыва пласта
Традиционно рассматриваемые моменты включают:
Зенитный угол и азимут. В идеальном случае желательно рассматривать в качестве кандидатов для ГРП вертикальные скважины, поскольку отход даже в 15 град ведет к росту давления закачки и риску преждевременного «Стопа», а также к резкому снижению продуктивности после ГРП. Другим вариантом является подбор скважины с отходом, траектория которой находится в плоскости трещины.
Траектория скважины. Данное обстоятельство критично и при работах с ГНКТ и операциях (ГИС) на кабеле, без исключения требуемых при проведении ГРП. Важно, чтобы траектория скважины не ограничивала выполнение этих работ.
Расчет проницаемости коллектора. Обычной проблемой, особенно, но, к сожалению, не ограничивающейся разработкой месторождения и интенсификации притока после ГРП является то обстоятельство, что проницаемость коллектора известна лишь в широком диапазоне. Следует предпринять все усилия к исследованию скважины перед ГРП для получения точных (в разумных пределах) значений проницаемости и скина. Какая полудлина и проводимость трещины должна учитываться при подготовке дизайна? Если необходимо рассчитать дизайн ГРП, исходя из соображений максимального дебита, то, грубо говоря, длина трещины рассчитывается по нижней границе проницаемости, а проводимость – по верхней. Это обеспечивает оптимизацию параметров трещины с точки зрения дебита, хотя и потребует дополнительных затрат из-за большего объема проппанта.
Повторный ГРП может привести к изменениям стрессов породы или росту фильтрации в призабойной зоне, что окажет влияние на будущие ГРП.
Качество цементирования (целостность сцепления). Чаще всего, качеству цементирования не придается той важности, которой оно заслуживает. Качественный цемент в зоне эксплуатационного хвостовика и интервала перфорации является обязательным условием для того, чтобы не допустить развития трещины за колонной в нежелательные зоны. Это особенно важно при ГРП вблизи зон контактов или при закачке кислоты перед ГРП.
Данные по соседним скважинам – Соберите данные по ранее выполненным ГРП в районе работ, включая данные по градиенту разрыва по нагнетательным скважинам и испытаниям на гидроразрыв по данным бурения. Это послужит хорошей оценкой при расчете давлений ГРП и прочих параметров дизайна, таких как фильтрация и время до получения ТСО. При ГРП в районах с естественным трещинообразованием важно обеспечить наличие понизителей фильтрации, таких как песок с размером частиц 100 меш и/или силикатной муки, для включения в состав жидкости ГРП и мини-ГРП.
Забойные манометры (ЗМ) с работой в реальном времени или записью в блок памяти. При ГРП сложных пластов с необычными стрессами в тектонически-активных зонах или при ГРП в скважинах с большим отходом и горизонтальных, применение ЗМ с выдачей данных в реальном времени является в высшей мере рекомендуется. Такие ЗМ могут размещаться на колонне ГРП или на НКТ сразу под пакером, с кабелем с другой стороны. Аналогично, если предусматривается сравнительно простой ГРП, например, в приуроченном коллекторе с нормальными режимами стрессов, достаточно использовать ЗМ с записью данных в блок памяти. Такие ЗМ легко извлекаются через скважинные камеры газлифтной установки, либо в промежутке между мини-ГРП и основным ГРП. Данные ЗМ критичны для оптимизации дизайнов ГРП и оценки работы скважины впоследствии.
Полудлина и проводимость трещины. Обычно рассчитываются, чтобы добиться максимальной продуктивности с учетом затрат.
Высота трещины. Критичное влияние на успешность ГРП может оказать прогноз развития трещины в высоту на новых скважинах, с возможным проникновением в нижележащие водоносные или вышележащие газоносные пласты. В низкопродуктивных зонах проблемой может являться чрезмерное увеличение высоты трещины. Использование линейных гелей или сшитой нефти может быть оптимальным для этих целей.
Другие рефераты на тему «Геология, гидрология и геодезия»:
- Гидрология суши
- Распределение температуры по стволу скважины с целью решения геологических и геолого-промысловых задач
- Модели эпитермальной минерализации - критические сопоставления
- Проект создания производства ферросиликомарганцевой продукции из руд Громовского месторождения
- Применение колтюбинговой технологии в бурении
Поиск рефератов
Последние рефераты раздела
- Анализ условий формирования и расчет основных статистических характеристик стока реки Кегеты
- Геодезический чертеж. Теодолит
- Геодезические методы анализа высотных и плановых деформаций инженерных сооружений
- Асбест
- Балтийско-Польский артезианский бассейн
- Безамбарное бурение
- Бурение нефтяных и газовых скважин