Идентификация объекта управления
Разработка диагностического обеспечения системы управления или объекта идет по следующей схеме (рис. 10.):
Рис. 10. Схема разработки диагностического обеспечения системы управления или объекта
Математическая постановка задачи технического диагностирования объекта (системы управления)
Пусть:
а) задана с
истема линейная с постоянными характеристиками на отдельном отрезке времени стационарная, работающая в номинальном режиме;
б) задано множество контрольных точек;
в) задано множество физических отказов с характеристикой отказов;
г) задано множество тестовых и рабочих сигналов управления;
д) задано время диагностирования ОУ (СУ).
Требуется:
Провести техническое диагностирование ОУ (СУ) в целях контроля технического состояния – обнаружение отказов, поиск места и определение причин отказа.
При вероятностных методах распознавания технического состояния системы вероятность постановки диагноза , где Ni – число состояний объекта из общего числа состояний N, у которых имел место диагноз Di, а P(kj/Di) – вероятность появления диагностического признака kj у объекта с диагнозом Di. Если среди Ni состояний объектов, имеющих диагноз Di, у Nij появился признак kj, то
Вероятность появления диагностического признака kj во всех состояниях объекта N независимо от их диагноза с учетом того, что kj появляется только в Nj состояниях объекта, равна:
.
Из изложенного выше вытекает, что вероятность совместного появления следующих событий: наличия у объекта диагноза Di и диагностического признака kj – равна:
.
Отсюда:
– формула Байеса.
Формула Байеса неточно отражает реальное положение при постановке диагноза Di при наличии диагностического признака kj. Дело в том, что в этой формуле априорно (без доказательства, заранее) принято, что все диагностические признаки имеют равную вероятность появления в реальных условиях работы системы, при этом не учитывается информационная ценность того или иного диагностического признака.
Информационная ценность диагностического признака определяется количеством информации, которое вносит данный диагностический признак в описание технического состояния объекта управления (ОУ) или системы управления (СУ).
Количество информации связано с энтропией (степенью неопределенности) состояния системы, чем выше определенность состояния системы (меньше энтропия), тем меньше информации мы получим, изучая (диагностируя) эту систему (о ней и так почти все известно).
Энтропия (степень неопределенности) системы по Шеннону (разработчик теории информации) находят по формуле:
где H(A) – энтропия системы A; P(Ai) – вероятность Ai состояния системы А.
Количество информации определяется как разность энтропии системы в 2-х различных состояниях:
J = H(A1) – H(A2),
где J – количество информации, H(A1) – энтропия 1-го состояния, H(A2) – энтропия 2-го состояния системы.
Список литературы
1. Льюнг Леннарт. Идентификация систем. – М.: Наука, 191.
2. Интеллектуальные системы автоматического управления. / Под ред. И.М. Макарова, В.М. Лохина – М.: Физматпит, 2001.
3. В.О. Толкачев, Т.В. Ягодкина. Методы идентификации одномерных линейных динамических систем. – М.: МЭИ, 197.
4. К.А. Алексеев. Моделирование и идентификация элементов и систем автоматического управления. – Пенза, 2002.
5. Дочф Ричард, Вишоп Роберт. Современные системы управления. – М.: Юнимедиастайп, 2002.
6. С.В. Шелобанов. Моделирование и идентификация систем управления. – Хабаровск, 199.
7. К.В. Егоров. Основы теории автоматического регулирования. – М.: Энергия, 167.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем