Идентификация объекта управления
В современных сложных объектах, как правило, выходной сигнал объекта зависит не от одного входного сигнала, как в случае с кривой разгона, а от нескольких входных сигналов, т.е. объект управления имеет сложное переплетение взаимосвязей входных и выходных сигналов.
Рис. 1. Схема объекта, состоящего из нескольких взаимос
вязанных входных-выходных сигналов
Для идентификации таких сложных объектов используется метод регрессионного анализа с проведением активного эксперимента на базе теории математического планирования эксперимента.
Назначение этой теории – значительно сократить количество экспериментальных опытов и упростить расчеты, необходимые для получения уравнения взаимосвязи выходного сигнала с несколькими входными сигналами – уравнения регрессии.
Сокращение числа необходимых экспериментов в теории математического планирования эксперимента достигается за счет одновременного изменения всех входных сигналов (факторов), а упрощение расчетов получается за счет того, что изменение входных сигналов (факторов) нормируется, т.е. величины . Пусть – зависит от 2-х входных факторов.
Рис. 2. Схема исследования объекта методом регрессионного анализа для двух входных сигналов (факторов)
Точка О – номинальный режим работы объекта. Нормализация происходит за счет того, что начало координат переносится в точку О на .
Рис. 3. Схема центрального плана полного факторного эксперимента для двух входных сигналов (факторов)
Здесь (рис. 3) изображен план проведения опытов для изучения зависимости . Число опытов равно 4=22 – полный факторный эксперимент; Для k входных факторов число опытов в факторном эксперименте: N=2k. При k=3 N=8; k=4, N=16 и т.д.
На приведенном выше рис. 3. изображен центральный (точка О – в центре) ортогональный полный факторный план эксперимента для 2-х входных факторов.
Таблица 1. Полный факторный эксперимент для k=2.
№ опыта |
|
|
|
1 |
+1 |
+1 |
|
2 |
-1 |
+1 |
|
3 |
-1 |
-1 |
|
4 |
+1 |
-1 |
|
Свойство плана, когда, называется ортогональностью плана.
Таблица 2. Полный факторный эксперимент для k=3.
№ опыта |
|
|
|
|
1 |
+1 |
+1 |
+1 |
|
2 |
-1 |
+1 |
+1 |
|
3 |
-1 |
-1 |
+1 |
|
4 |
+1 |
-1 |
+1 |
|
5 |
+1 |
+1 |
-1 |
|
6 |
-1 |
+1 |
-1 |
|
7 |
-1 |
-1 |
-1 |
|
8 |
+1 |
-1 |
-1 |
|
В полном факторном плане экспериментов число опытов резко возрастает в зависимости от числа входных факторов: k=4 N=16; k=5, N=32; k=6, N=64 опыта. Поэтому для сокращения числа опытов с минимальной потерей информации применяются сокращенные планы – дробные реплики. Если планы содержат половину опытов полного факторного эксперимента, то такой план носит название полуреплики.
Таблица 3. Пример полуреплики для k=4 (ПФЭ=16)
№ опыта |
|
|
|
|
1 |
+1 |
+1 |
+1 |
+1 |
2 |
+1 |
-1 |
+1 |
-1 |
3 |
-1 |
+1 |
+1 |
-1 |
4 |
-1 |
-1 |
+1 |
+1 |
5 |
+1 |
+1 |
-1 |
-1 |
6 |
+1 |
-1 |
-1 |
+1 |
7 |
-1 |
+1 |
-1 |
+1 |
8 |
-1 |
-1 |
-1 |
-1 |
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем