Разработка программного модуля для нахождения оптимальных предельно-допустимых выбросов в атмосферу от группы источников
III. Ограничения вида «0» - Плановые ограничения. Дополнительные переменные (X), несущие определенный экономический смысл - перерасход ресурсов или перевыполнение плана, перепроизводство, добавляются с коэффициентом «-1», в целевую функцию - с коэффициентом «0». А искусственные переменные (Y) как в предыдущем случае.
2.2 Алгоритм симплекс метода (первая симплекс таблица)
th=19 height=195 src="images/referats/25729/image044.png">Пусть система приведена к каноническому виду.
X1+ q1,m+1 Xm+1 + …. + q1,m+n Xm+n = h1
X2+ q1,m+1 Xm+1 + …. + q1,m+n Xm+n = h1
X3+ q1,m+1 Xm+1 + …. + q1,m+n Xm+n = h1
……………………………………………………………….
Xm+ qm,m+1 Xm+1 + …. + qm,m+n Xm+n =hm
В ней m базисных переменных, k свободных переменных. m+k=n - всего переменных.
Fmin= C1X1+ C2X2+ C3X3+ + CnXn
Все hi должны быть больше либо равны нулю, где i=1,2 .m. На первом шаге в качестве допустимого решения принимаем все Xj=0 (j=m+1,m+2, .,m+k). При этом все базисные переменные Xi=Hi.
Для дальнейших рассуждений вычислений будем пользоваться первой симплекс таблицей (таблица1).
Таблица 1.
C |
Б |
H |
C1 |
C2 |
… |
Cm |
Cm+1 |
… |
Cm+k |
X1 |
X2 |
… |
Xm |
Xm+1 |
… |
Xm+k | |||
C1 C2 C3 : : Cm |
X1 X2 X3 : : Xm |
h1 h2 h3 : : hm |
1 0 0 : : 0 |
0 1 0 : : 0 |
: : : : : : |
0 0 0 : : 0 |
q1,m+1 q2,m+1 q3,m+1 : : qm,m+1 |
: : : : : : |
q1,m+k q2,m+k q3,m+k : : qm,m+k |
F= |
F0 |
|
… |
m |
m+1 |
… |
m+k |
Первый столбец- коэффициенты в целевой функции при базисных переменных.
Второй столбец - базисные переменные.
Третий столбец - свободные члены (hi00).
Самая верхняя строка - коэффициенты при целевой функции.
Вторая верхняя строка - сами переменные, входящие в целевую функцию и в систему ограничений.
Основное поле симплекс метода - система коэффициентов из уравнения.
Последняя строка - служит для того, чтобы ответить на вопрос: «оптимален план или нет».
Индексная строка позволяет нам судить об оптимальности плана:
1. При отыскании Fmin в индексной строке должны быть отрицательные и нулевые оценки.
2. При отыскании Fmax в индексной строке должны быть нулевые и положительные оценки.
Переход ко второй итерации:
Для этого отыскиваем ключевой (главный) столбец и ключевую (главную) строку.
Ключевым столбцом является тот в котором находится наибольший положительный элемент индексной строки при отыскании Fmin или наименьший отрицательный элемент при отыскании Fmax.
Ключевой строкой называется та, в которой содержится наименьшее положительное частное от деления элементов столбца H на соответствующие элементы ключевого столбца.
На пересечении строки и столбца находится разрешающий элемент.
На этом этапе осуществляется к переходу к последующим итерациям.
Переход к итерациям:
1. Выводится базис ключевой строки, уступая место переменной из ключевого столбца со своим коэффициентом.
2. Заполняется строка вновь введенного базиса путем деления соответствующих элементов выделенной строки предыдущей итерации на разрешающий элемент.
3. Если в главной строке содержится нулевой элемент, то столбец, в котором находиться этот элемент переноситься в последующую итерацию без изменения.
4. Если в главном столбце имеется нулевой элемент, то строка, в которой он находиться переноситься без изменения в последующую итерацию.
5. Остальные элементы переносятся по формуле:
3. Формализация поставленной задачи
Прежде всего, покажем, что характерные свойства МАД и известные сведения из теории линейных операторов позволяют экспертизу АОМ и установление ПДВ формализовать в виде двух зависимых математических задач.
Пусть суммарное загрязнение ВБ города отдельной примесью характеризуется функцией C(X,t) пространственных координат и времени. Загрязнение считается допустимым при C(X,t) < N(X) , где N – норматив. Если C(X,t) > N(X), то необходимы АО мероприятия по достижению норматива. При их планировании из суммарного загрязнения атмосферы требуется выделить вклады Cj(X,t), j=1,…,J от J заданных источников, под которыми могут подразумеваться как отдельные трубы, аэрационные фонари и т.д., так и их совокупности, объединенные по различным признакам (по принадлежности к одному цеху, предприятию, ведомству по высоте выброса и т.д.). Пусть выбросы источников есть Q = (Q 1,Q 2,…,QJ). Предположим, что остальные параметры (высота, координаты и т.д.) в результате АОМ не изменяются. Тогда возникающую при экспертизе планов АОМ города задачу - определить изменение dC характеристик загрязнения ВБ по сравнению с базовым (предплановым) периодом – можно записать в виде:
dC = C0 – CP = A(Q) – A(X) (3.21)
где А- оператор модельной зависимости C от Q; величины C с индексом '0' относятся к базовому периоду, а с индексом 'P' - к ожидаемому после реализации запланированных АОМ. Заметим, что не только ожидаемый CP, но и существующий уровень загрязнения C0, суммарное значение которого в некоторых точках промышленного города регулярно измеряется [78], требует в (1.21) модельного представления C0 = A(Q0), поскольку в общем случае методы контроля загрязнения не могут указать вклад конкретного источника в измеряемую величину. Соотношение (3.21) показывает, что формализация выделенной задачи сводится к построению и надлежащему применению оператора А, позволяющего переходить от выбросов к характеристикам загрязнения ВБ и различать заданный источник на фоне всех остальных.
Другие рефераты на тему «Экология и охрана природы»:
- Извлечение аммиака из сточных вод текстильного производства
- Мониторинг среды обитания
- Использование водных ресурсов и гидролого-экологические проблемы водных объектов суши
- Безотходные технологические процессы в химической промышленности на примере синтезе аммиака
- Экологические основы природопользования
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль